Vector Quantisation for Robust Segmentation
- URL: http://arxiv.org/abs/2207.01919v1
- Date: Tue, 5 Jul 2022 09:52:53 GMT
- Title: Vector Quantisation for Robust Segmentation
- Authors: Ainkaran Santhirasekaram, Avinash Kori, Mathias Winkler, Andrea
Rockall, Ben Glocker
- Abstract summary: The reliability of segmentation models in the medical domain depends on the model's robustness to perturbations in the input space.
We propose and justify that learning a discrete representation in a low dimensional embedding space improves robustness of a segmentation model.
This is achieved with a dictionary learning method called vector quantisation.
- Score: 14.477470283239501
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The reliability of segmentation models in the medical domain depends on the
model's robustness to perturbations in the input space. Robustness is a
particular challenge in medical imaging exhibiting various sources of image
noise, corruptions, and domain shifts. Obtaining robustness is often attempted
via simulating heterogeneous environments, either heuristically in the form of
data augmentation or by learning to generate specific perturbations in an
adversarial manner. We propose and justify that learning a discrete
representation in a low dimensional embedding space improves robustness of a
segmentation model. This is achieved with a dictionary learning method called
vector quantisation. We use a set of experiments designed to analyse robustness
in both the latent and output space under domain shift and noise perturbations
in the input space. We adapt the popular UNet architecture, inserting a
quantisation block in the bottleneck. We demonstrate improved segmentation
accuracy and better robustness on three segmentation tasks. Code is available
at
\url{https://github.com/AinkaranSanthi/Vector-Quantisation-for-Robust-Segmentation}
Related papers
- Denoising Diffusions in Latent Space for Medical Image Segmentation [14.545920180010201]
Diffusion models (DPMs) have demonstrated remarkable performance in image generation, often times outperforming other generative models.
We propose a novel conditional generative modeling framework (LDSeg) that performs diffusion in latent space for medical image segmentation.
arXiv Detail & Related papers (2024-07-17T18:44:38Z) - SegRefiner: Towards Model-Agnostic Segmentation Refinement with Discrete
Diffusion Process [102.18226145874007]
We propose a model-agnostic solution called SegRefiner to enhance the quality of object masks produced by different segmentation models.
SegRefiner takes coarse masks as inputs and refines them using a discrete diffusion process.
It consistently improves both the segmentation metrics and boundary metrics across different types of coarse masks.
arXiv Detail & Related papers (2023-12-19T18:53:47Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
arXiv Detail & Related papers (2023-10-22T04:06:44Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
We focus on improving the generalization to out-of-domain data.
We learn a set of vectors that deform the objects in an adversarial fashion.
We perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model.
arXiv Detail & Related papers (2023-08-29T17:58:55Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
We propose a novel approach to improve the robustness of semantic segmentation techniques.
We design Robusta, a novel conditional generative adversarial network to generate realistic and plausible perturbed images.
Our results suggest that this approach could be valuable in safety-critical applications.
arXiv Detail & Related papers (2023-08-01T10:02:26Z) - Investigating and Improving Latent Density Segmentation Models for Aleatoric Uncertainty Quantification in Medical Imaging [21.311726807879456]
In image segmentation, latent density models can be utilized to address this problem.
The most popular approach is the Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize the conditional data log-likelihood Evidence Lower Bound.
We introduce mutual information updates and entropy-regularized Sinkhorn updates in the latent space to promote homogeneity across all latent dimensions.
arXiv Detail & Related papers (2023-07-31T14:09:03Z) - Improving the Robustness of Summarization Systems with Dual Augmentation [68.53139002203118]
A robust summarization system should be able to capture the gist of the document, regardless of the specific word choices or noise in the input.
We first explore the summarization models' robustness against perturbations including word-level synonym substitution and noise.
We propose a SummAttacker, which is an efficient approach to generating adversarial samples based on language models.
arXiv Detail & Related papers (2023-06-01T19:04:17Z) - BayeSeg: Bayesian Modeling for Medical Image Segmentation with
Interpretable Generalizability [15.410162313242958]
We propose an interpretable Bayesian framework (BayeSeg) to enhance model generalizability for medical image segmentation.
Specifically, we first decompose an image into a spatial-correlated variable and a spatial-variant variable, assigning hierarchical Bayesian priors to explicitly force them to model the domain-stable shape and domain-specific appearance information respectively.
Finally, we develop a variational Bayesian framework to infer the posterior distributions of these explainable variables.
arXiv Detail & Related papers (2023-03-03T04:48:37Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.