Investigating and Improving Latent Density Segmentation Models for Aleatoric Uncertainty Quantification in Medical Imaging
- URL: http://arxiv.org/abs/2307.16694v5
- Date: Tue, 20 Aug 2024 11:47:44 GMT
- Title: Investigating and Improving Latent Density Segmentation Models for Aleatoric Uncertainty Quantification in Medical Imaging
- Authors: M. M. Amaan Valiuddin, Christiaan G. A. Viviers, Ruud J. G. van Sloun, Peter H. N. de With, Fons van der Sommen,
- Abstract summary: In image segmentation, latent density models can be utilized to address this problem.
The most popular approach is the Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize the conditional data log-likelihood Evidence Lower Bound.
We introduce mutual information updates and entropy-regularized Sinkhorn updates in the latent space to promote homogeneity across all latent dimensions.
- Score: 21.311726807879456
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Data uncertainties, such as sensor noise, occlusions or limitations in the acquisition method can introduce irreducible ambiguities in images, which result in varying, yet plausible, semantic hypotheses. In Machine Learning, this ambiguity is commonly referred to as aleatoric uncertainty. In image segmentation, latent density models can be utilized to address this problem. The most popular approach is the Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize the conditional data log-likelihood Evidence Lower Bound. In this work, we demonstrate that the PU-Net latent space is severely sparse and heavily under-utilized. To address this, we introduce mutual information maximization and entropy-regularized Sinkhorn Divergence in the latent space to promote homogeneity across all latent dimensions, effectively improving gradient-descent updates and latent space informativeness. Our results show that by applying this on public datasets of various clinical segmentation problems, our proposed methodology receives up to 11% performance gains compared against preceding latent variable models for probabilistic segmentation on the Hungarian-Matched Intersection over Union. The results indicate that encouraging a homogeneous latent space significantly improves latent density modeling for medical image segmentation.
Related papers
- Generative Edge Detection with Stable Diffusion [52.870631376660924]
Edge detection is typically viewed as a pixel-level classification problem mainly addressed by discriminative methods.
We propose a novel approach, named Generative Edge Detector (GED), by fully utilizing the potential of the pre-trained stable diffusion model.
We conduct extensive experiments on multiple datasets and achieve competitive performance.
arXiv Detail & Related papers (2024-10-04T01:52:23Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
We propose to ameliorate the semantic segmentation quality of existing discriminative approaches with a mask prior modeled by a denoising diffusion generative model.
We evaluate the proposed prior modeling with several off-the-shelf segmentors, and our experimental results on ADE20K and Cityscapes demonstrate that our approach could achieve competitively quantitative performance.
arXiv Detail & Related papers (2023-06-02T17:47:01Z) - Stochastic Segmentation with Conditional Categorical Diffusion Models [3.8168879948759953]
We propose a conditional categorical diffusion model (CCDM) for semantic segmentation based on Denoising Diffusion Probabilistic Models.
Our results show that CCDM achieves state-of-the-art performance on LIDC, and outperforms established baselines on the classical segmentation dataset Cityscapes.
arXiv Detail & Related papers (2023-03-15T19:16:47Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
We focus on capturing the data-inherent uncertainty (aka aleatoric uncertainty) in segmentation, typically when ambiguities exist in input images.
We propose a novel mixture of experts (MoSE) model, where each expert network estimates a distinct mode of aleatoric uncertainty.
We develop a Wasserstein-like loss that directly minimizes the distribution distance between the MoSE and ground truth annotations.
arXiv Detail & Related papers (2022-12-14T16:48:21Z) - Improving Aleatoric Uncertainty Quantification in Multi-Annotated
Medical Image Segmentation with Normalizing Flows [0.0]
Quantifying uncertainty in medical image segmentation applications is essential.
We propose to use a more flexible approach by introducing Normalizing Flows (NFs)
We prove this hypothesis by adopting the Probabilistic U-Net and augmenting the posterior density with an NF, allowing it to be more expressive.
arXiv Detail & Related papers (2021-08-04T16:33:12Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
We consider the problem of sparsifying the discrete latent space of a trained conditional variational autoencoder.
We use evidential theory to identify the latent classes that receive direct evidence from a particular input condition and filter out those that do not.
Experiments on diverse tasks, such as image generation and human behavior prediction, demonstrate the effectiveness of our proposed technique.
arXiv Detail & Related papers (2020-10-19T01:27:21Z) - Stochastic Segmentation Networks: Modelling Spatially Correlated
Aleatoric Uncertainty [32.33791302617957]
We introduce segmentation networks (SSNs), an efficient probabilistic method for modelling aleatoric uncertainty with any image segmentation network architecture.
SSNs can generate multiple spatially coherent hypotheses for a single image.
We tested our method on the segmentation of real-world medical data, including lung nodules in 2D CT and brain tumours in 3D multimodal MRI scans.
arXiv Detail & Related papers (2020-06-10T18:06:41Z) - Discrete Variational Attention Models for Language Generation [51.88612022940496]
We propose a discrete variational attention model with categorical distribution over the attention mechanism owing to the discrete nature in languages.
Thanks to the property of discreteness, the training of our proposed approach does not suffer from posterior collapse.
arXiv Detail & Related papers (2020-04-21T05:49:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.