論文の概要: Bayesian NVH metamodels to assess interior cabin noise using measurement
databases
- arxiv url: http://arxiv.org/abs/2207.02120v1
- Date: Sun, 12 Jun 2022 19:48:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-10 11:57:22.496826
- Title: Bayesian NVH metamodels to assess interior cabin noise using measurement
databases
- Title(参考訳): 測定データベースを用いたベイズ型NVHモデルによる室内騒音評価
- Authors: V. Prakash, O. Sauvage, J. Antoni, L. Gagliardini
- Abstract要約: 本研究では,空力やローリングノイズなどのブロードバンドノイズに対するグローバルなNVHメタモデリング手法を提案する。
ブートストラップとガウス基底関数を持つ一般化加法モデル(GAM)を用いて、予測変数に対する音圧レベル(SPL)の依存性をモデル化する。
確率モデリングは、オープンソースのライブラリPyMC3を用いて行われる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, a great emphasis has been put on engineering the acoustic
signature of vehicles that represents the overall comfort level for passengers.
Due to highly uncertain behavior of production cars, probabilistic metamodels
or surrogates can be useful to estimate the NVH dispersion and assess different
NVH risks. These metamodels follow physical behaviors and shall aid as a design
space exploration tool during the early stage design process to support the NVH
optimization. The measurement databases constitute different noise paths such
as aerodynamic noise (wind-tunnel test), tire-pavement interaction noise
(rolling noise), and noise due to electric motors (whining noise). This
research work proposes a global NVH metamodeling technique for broadband noises
such as aerodynamic and rolling noises exploiting the Bayesian framework that
takes into account the prior (domain-expert) knowledge about complex physical
mechanisms. Generalized additive models (GAMs) with polynomials and Gaussian
basis functions are used to model the dependency of sound pressure level (SPL)
on predictor variables. Moreover, parametric bootstrap algorithm based on
data-generating mechanism using the point estimates is used to estimate the
dispersion in unknown parameters. Probabilistic modelling is carried out using
an open-source library PyMC3 that utilizes No-U-Turn sampler (NUTS) and the
developed models are validated using Cross-Validation technique.
- Abstract(参考訳): 近年では、乗客全体の快適性を表す車両の音響的シグネチャのエンジニアリングに重点が置かれている。
生産車の極めて不確実な挙動のため、確率的メタモデルやサロゲートは、NVHの分散を推定し、異なるNVHリスクを評価するのに有用である。
これらのメタモデルは物理的挙動に従い、NVH最適化をサポートする初期設計プロセスにおいて設計空間探索ツールとして役立つ。
測定データベースは、空気力学ノイズ(風-トンネル試験)、タイヤ-舗装相互作用ノイズ(ローリングノイズ)、電動機によるノイズ(遮音)などの異なるノイズパスを構成する。
本研究は,複雑な物理機構に関する事前知識を考慮に入れたベイズフレームワークを利用した空力やローリングノイズなどのブロードバンドノイズに対するグローバルなNVHメタモデリング手法を提案する。
多項式とガウス基底関数を持つ一般化加法モデル(GAM)を用いて、予測変数に対する音圧レベル(SPL)の依存性をモデル化する。
さらに、点推定を用いたデータ生成機構に基づくパラメトリックブートストラップアルゴリズムを用いて未知パラメータの分散を推定する。
No-U-Turn sampler (NUTS) を用いたオープンソースのライブラリ PyMC3 を用いて確率論的モデリングを行い, クロスバリデーション手法を用いて検証を行った。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Bayesian Inference of General Noise Model Parameters from Surface Code's Syndrome Statistics [0.0]
表面符号のテンソルネットワークシミュレータを統合する一般雑音モデルベイズ推論法を提案する。
雑音パラメータが一定であり変化しない定常雑音に対しては,マルコフ連鎖モンテカルロに基づく手法を提案する。
より現実的な状況である時間変化ノイズに対しては、シーケンシャルなモンテカルロに基づく別の手法を導入する。
論文 参考訳(メタデータ) (2024-06-13T10:26:04Z) - Model-Based Qubit Noise Spectroscopy [0.0]
古典的な信号処理からインスピレーションを得てモデルに基づくQNSアプローチを導出する。
シミュレーションと実験データの両方を通して、これらのモデルに基づくQNSアプローチが、古典的手法の統計的および計算的利点をいかに維持するかを示す。
論文 参考訳(メタデータ) (2024-05-20T09:30:38Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
本研究では,ポンプ,圧縮機,ファン,その他の産業機械で使用される誘導電動機の異常検出システムについて紹介する。
我々は、計算コストの低い前処理技術と機械学習(ML)モデルの組み合わせを用いる。
論文 参考訳(メタデータ) (2023-10-15T18:43:45Z) - A physics-informed machine learning model for reconstruction of dynamic
loads [0.0]
本稿では, 物理インフォームド・マシン・ラーニング・フレームワークを用いて, 測定された偏向, 速度, 加速度に基づいて動的力の再構成を行う。
このフレームワークは不完全で汚染されたデータを扱うことができ、ノイズ測定システムを考慮した自然な正規化手法を提供する。
開発されたフレームワークには、設計モデルと仮定、損傷検出と健康モニタリングを支援するための応答の予後が含まれる。
論文 参考訳(メタデータ) (2023-08-15T18:33:58Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
我々は,ディープニューラルネットワークに基づくオートエンコーダの内部次元を要約統計として利用する。
パラメータ関連情報を全て符号化するエンコーダのインセンティブを作成するため,トレーニングデータの生成に使用した暗黙的情報にデコーダがアクセスできるようにする。
論文 参考訳(メタデータ) (2022-01-28T12:00:31Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
本研究では,実世界のランダム性を捉え,誤差を計測できる微視的交通モデルを提案する。
提案フレームワークの特長の一つは,自動車追従行動と車線変更行動の両方を1つのモデルで捉える能力である。
論文 参考訳(メタデータ) (2020-07-17T06:03:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。