Bayesian NVH metamodels to assess interior cabin noise using measurement
databases
- URL: http://arxiv.org/abs/2207.02120v1
- Date: Sun, 12 Jun 2022 19:48:24 GMT
- Title: Bayesian NVH metamodels to assess interior cabin noise using measurement
databases
- Authors: V. Prakash, O. Sauvage, J. Antoni, L. Gagliardini
- Abstract summary: This research work proposes a global NVH metamodeling technique for broadband noises such as aerodynamic and rolling noises.
Generalized additive models (GAMs) with bootstraps and Gaussian basis functions are used to model the dependency of sound pressure level (SPL) on predictor variables.
Probabilistic modelling is carried out using an open-source library PyMC3.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, a great emphasis has been put on engineering the acoustic
signature of vehicles that represents the overall comfort level for passengers.
Due to highly uncertain behavior of production cars, probabilistic metamodels
or surrogates can be useful to estimate the NVH dispersion and assess different
NVH risks. These metamodels follow physical behaviors and shall aid as a design
space exploration tool during the early stage design process to support the NVH
optimization. The measurement databases constitute different noise paths such
as aerodynamic noise (wind-tunnel test), tire-pavement interaction noise
(rolling noise), and noise due to electric motors (whining noise). This
research work proposes a global NVH metamodeling technique for broadband noises
such as aerodynamic and rolling noises exploiting the Bayesian framework that
takes into account the prior (domain-expert) knowledge about complex physical
mechanisms. Generalized additive models (GAMs) with polynomials and Gaussian
basis functions are used to model the dependency of sound pressure level (SPL)
on predictor variables. Moreover, parametric bootstrap algorithm based on
data-generating mechanism using the point estimates is used to estimate the
dispersion in unknown parameters. Probabilistic modelling is carried out using
an open-source library PyMC3 that utilizes No-U-Turn sampler (NUTS) and the
developed models are validated using Cross-Validation technique.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Bayesian Inference of General Noise Model Parameters from Surface Code's Syndrome Statistics [0.0]
We propose general noise model Bayesian inference methods that integrate the surface code's tensor network simulator.
For stationary noise, where the noise parameters are constant and do not change, we propose a method based on the Markov chain Monte Carlo.
For time-varying noise, which is a more realistic situation, we introduce another method based on the sequential Monte Carlo.
arXiv Detail & Related papers (2024-06-13T10:26:04Z) - Model-Based Qubit Noise Spectroscopy [0.0]
We derive model-based QNS approaches using inspiration from classical signal processing.
We show, through both simulation and experimental data, how these model-based QNS approaches maintain the statistical and computational benefits of their classical counterparts.
arXiv Detail & Related papers (2024-05-20T09:30:38Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - A physics-informed machine learning model for reconstruction of dynamic
loads [0.0]
This paper presents a physics-informed machine-learning framework for reconstructing dynamic forces based on measured deflections, velocities, or accelerations.
The framework can work with incomplete and contaminated data and offers a natural regularization approach to account for noise measurement system.
Uses of the developed framework include design models and assumptions, as well as prognosis of responses to assist in damage detection and health monitoring.
arXiv Detail & Related papers (2023-08-15T18:33:58Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
We use the inner dimension of deep neural network based Autoencoders as summary statistics.
To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information that has been used to generate the training data.
arXiv Detail & Related papers (2022-01-28T12:00:31Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
This study presents a microscopic traffic model that can capture randomness and measure errors in the real world.
Since one unique feature of the proposed framework is the capability of capturing both car-following and lane-changing behaviors with one single model, numerical tests are carried out with two separated datasets.
arXiv Detail & Related papers (2020-07-17T06:03:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.