Deterministic Decoupling of Global Features and its Application to Data
Analysis
- URL: http://arxiv.org/abs/2207.02132v1
- Date: Tue, 5 Jul 2022 15:54:39 GMT
- Title: Deterministic Decoupling of Global Features and its Application to Data
Analysis
- Authors: Eduardo Martinez-Enriquez (1), Maria del Mar Gonzalez (2), Javier
Portilla (1) ((1) Consejo Superior de Investigaciones Cientificas CSIC, (2)
Universidad Autonoma de Madrid)
- Abstract summary: We propose a new formalism that is based on defining transformations on submanifolds.
Through these transformations we define a normalization that, we demonstrate, allows for decoupling differentiable features.
We apply this method in the original data domain and at the output of a filter bank to regression and classification problems based on global descriptors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a method for deterministic decoupling of global features and
show its applicability to improve data analysis performance, as well as to open
new venues for feature transfer. We propose a new formalism that is based on
defining transformations on submanifolds, by following trajectories along the
features gradients. Through these transformations we define a normalization
that, we demonstrate, allows for decoupling differentiable features. By
applying this to sampling moments, we obtain a quasi-analytic solution for the
orthokurtosis, a normalized version of the kurtosis that is not just decoupled
from mean and variance, but also from skewness. We apply this method in the
original data domain and at the output of a filter bank to regression and
classification problems based on global descriptors, obtaining a consistent and
significant improvement in performance as compared to using classical
(non-decoupled) descriptors.
Related papers
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Generalized Laplace Approximation [23.185126261153236]
We introduce a unified theoretical framework to attribute Bayesian inconsistency to model misspecification and inadequate priors.
We propose the generalized Laplace approximation, which involves a simple adjustment to the Hessian matrix of the regularized loss function.
We assess the performance and properties of the generalized Laplace approximation on state-of-the-art neural networks and real-world datasets.
arXiv Detail & Related papers (2024-05-22T11:11:42Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - Stability vs Implicit Bias of Gradient Methods on Separable Data and
Beyond [33.593203156666746]
We focus on the generalization properties of unregularized gradient-based learning procedures applied to separable linear classification.
We give an additional unified explanation for this generalization, that we refer to as realizability and self-boundedness.
In some of these cases, our bounds significantly improve upon the existing generalization error bounds in the literature.
arXiv Detail & Related papers (2022-02-27T19:56:36Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Cluster-level Feature Alignment for Person Re-identification [16.01713931617725]
This paper probes another feature alignment modality, namely cluster-level feature alignment across whole dataset.
We propose anchor loss and investigate many variants of cluster-level feature alignment, which consists of iterative aggregation and alignment from overview of dataset.
arXiv Detail & Related papers (2020-08-15T23:47:47Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.