論文の概要: SUIT: Learning Significance-guided Information for 3D Temporal Detection
- arxiv url: http://arxiv.org/abs/2307.01807v1
- Date: Tue, 4 Jul 2023 16:22:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 16:32:15.976336
- Title: SUIT: Learning Significance-guided Information for 3D Temporal Detection
- Title(参考訳): 3次元時間検出のための学習意義誘導情報
- Authors: Zheyuan Zhou, Jiachen Lu, Yihan Zeng, Hang Xu, Li Zhang
- Abstract要約: フレーム間の情報融合のためのスパース機能として時間的情報を単純化するSUIT(Significance-gUided Information for 3D Temporal Detection)を学習する。
大規模なnuScenesとデータセットにおいて、SUITは時間融合のメモリとコストを大幅に削減するだけでなく、最先端のベースラインよりも優れた性能を発揮する。
- 参考スコア(独自算出の注目度): 15.237488449422008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection from LiDAR point cloud is of critical importance for
autonomous driving and robotics. While sequential point cloud has the potential
to enhance 3D perception through temporal information, utilizing these temporal
features effectively and efficiently remains a challenging problem. Based on
the observation that the foreground information is sparsely distributed in
LiDAR scenes, we believe sufficient knowledge can be provided by sparse format
rather than dense maps. To this end, we propose to learn Significance-gUided
Information for 3D Temporal detection (SUIT), which simplifies temporal
information as sparse features for information fusion across frames.
Specifically, we first introduce a significant sampling mechanism that extracts
information-rich yet sparse features based on predicted object centroids. On
top of that, we present an explicit geometric transformation learning
technique, which learns the object-centric transformations among sparse
features across frames. We evaluate our method on large-scale nuScenes and
Waymo dataset, where our SUIT not only significantly reduces the memory and
computation cost of temporal fusion, but also performs well over the
state-of-the-art baselines.
- Abstract(参考訳): LiDARポイントクラウドからの3Dオブジェクト検出は、自動運転とロボット工学にとって非常に重要である。
逐次点雲は時間的情報を通じて3次元知覚を高める可能性があるが、これらの時間的特徴を効果的に効果的に活用することは難しい問題である。
前景情報がライダーシーンに分散しているという観測に基づいて、十分な知識は密集した地図ではなくスパースフォーマットで提供できると信じている。
そこで本研究では,時間情報をフレーム間の情報融合のためのばらばらな特徴として単純化する3次元時間検出(suit)の意義誘導情報を学ぶことを提案する。
具体的には,まず,予測対象のセントロイドに基づいて,情報に富みながらもスパースな特徴を抽出できる重要なサンプリング機構を導入する。
さらに,フレームにまたがるスパース特徴間のオブジェクト中心変換を学習する,明示的な幾何学的変換学習手法を提案する。
大規模なnuScenesとWaymoデータセットにおいて、SUITは時間融合のメモリと計算コストを大幅に削減するだけでなく、最先端のベースラインよりも優れた性能を発揮する。
関連論文リスト
- Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences [25.74000325019015]
クロスフレーム動作予測情報を用いた時空間特徴学習を容易にするために,新しいLiDAR 3Dオブジェクト検出フレームワークLiSTMを導入する。
我々は,本フレームワークが優れた3次元検出性能を実現することを示すため,アグリゲーションとnuScenesデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-09-06T16:29:04Z) - TASeg: Temporal Aggregation Network for LiDAR Semantic Segmentation [80.13343299606146]
そこで本稿では, 時系列LiDARアグリゲーション・蒸留(TLAD)アルゴリズムを提案する。
時間画像のフル活用を目的として,カメラFOVを大幅に拡張できるTIAFモジュールを設計した。
また,静的移動スイッチ拡張(SMSA)アルゴリズムを開発し,時間的情報を利用してオブジェクトの動作状態を自由に切り替える。
論文 参考訳(メタデータ) (2024-07-13T03:00:16Z) - TimePillars: Temporally-Recurrent 3D LiDAR Object Detection [8.955064958311517]
TimePillarsは時間的にリカレントなオブジェクト検出パイプラインである。
時間にわたってLiDARデータの柱表現を利用する。
基礎的なビルディングブロックがいかに堅牢で効率的な結果を得るのに十分なかを示す。
論文 参考訳(メタデータ) (2023-12-22T10:25:27Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
ドメイン適応によるオブジェクトの無傷な特徴を関連付ける新しい3D検出フレームワークを提案する。
我々は,KITTIの3D検出ベンチマークにおいて,精度と速度の両面で最新の性能を実現する。
論文 参考訳(メタデータ) (2022-08-24T16:54:38Z) - Learning Spatial and Temporal Variations for 4D Point Cloud Segmentation [0.39373541926236766]
フレーム間の時間的情報は3次元シーンの知覚に重要な知識をもたらすと我々は主張する。
本研究では,4次元点雲の時間変動を捉えるために,時間変動対応モジュールと時間変化対応のボクセル点精製器を設計する。
論文 参考訳(メタデータ) (2022-07-11T07:36:26Z) - Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
Object Segmentation [23.666607237164186]
本稿では,LiDAR-MOSの性能向上のために,空間時空間情報とLiDARスキャンの異なる表現モダリティを併用した新しいディープニューラルネットワークを提案する。
具体的には、まず、空間情報と時間情報とを別々に扱うために、レンジ画像に基づくデュアルブランチ構造を用いる。
また、3次元スパース畳み込みによるポイントリファインメントモジュールを使用して、LiDAR範囲の画像とポイントクラウド表現の両方からの情報を融合する。
論文 参考訳(メタデータ) (2022-07-05T17:59:17Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
我々は、ポイントクラウドデータからオブジェクトの6Dポーズを推定するタスクに取り組む。
この課題に対処する最近の学習ベースのアプローチは、合成データセットにおいて大きな成功を収めている。
これらの障害の原因を分析し、ソースとターゲットポイントの雲の特徴分布の違いに遡る。
論文 参考訳(メタデータ) (2022-03-29T07:55:04Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
MeshとPoint Cloudの単純化手法は、3Dモデルの複雑さを低減しつつ、視覚的品質と関連する健全な機能を維持することを目的としている。
そこで本研究では,正解点の標本化を学習し,高速点雲の簡易化手法を提案する。
提案手法は、入力空間から任意のユーザ定義の点数を選択し、視覚的知覚誤差を最小限に抑えるために、その位置を再配置するよう訓練されたグラフニューラルネットワークアーキテクチャに依存する。
論文 参考訳(メタデータ) (2021-09-30T10:23:55Z) - Spatio-temporal Self-Supervised Representation Learning for 3D Point
Clouds [96.9027094562957]
ラベルのないタスクから学習できる時間的表現学習フレームワークを導入する。
幼児が野生の視覚的データからどのように学ぶかに触発され、3Dデータから派生した豊かな手がかりを探索する。
STRLは3Dポイントクラウドシーケンスから2つの時間的関連フレームを入力として、空間データ拡張で変換し、不変表現を自己指導的に学習する。
論文 参考訳(メタデータ) (2021-09-01T04:17:11Z) - SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud [20.84329063509459]
LiDARベースの3Dオブジェクト検出は、自動運転車に大きな影響を与える。
LiDARの固有特性の制限により、センサーから遠く離れた物体において、より少ない点が収集される。
そこで本研究では,SIENetという2段階の3次元物体検出フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T07:45:09Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
動的情報モデリングを用いた新しい3次元オブジェクト検出フレームワークを提案する。
粗い予測は、ボクセルベースの領域提案ネットワークを介して第1段階で生成される。
大規模なnuScenes 3D検出ベンチマークで実験を行った。
論文 参考訳(メタデータ) (2020-07-16T18:27:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。