Case Studies on X-Ray Imaging, MRI and Nuclear Imaging
- URL: http://arxiv.org/abs/2306.02055v3
- Date: Sat, 17 Jun 2023 17:14:19 GMT
- Title: Case Studies on X-Ray Imaging, MRI and Nuclear Imaging
- Authors: Shuvra Sarker, Angona Biswas, MD Abdullah Al Nasim, Md Shahin Ali, Sai
Puppala, Sajedul Talukder
- Abstract summary: We will focus on how AI-based approaches, particularly the use of Convolutional Neural Networks (CNN), can assist in disease detection through medical imaging technology.
CNN is a commonly used approach for image analysis due to its ability to extract features from raw input images.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The field of medical imaging is an essential aspect of the medical sciences,
involving various forms of radiation to capture images of the internal tissues
and organs of the body. These images provide vital information for clinical
diagnosis, and in this chapter, we will explore the use of X-ray, MRI, and
nuclear imaging in detecting severe illnesses. However, manual evaluation and
storage of these images can be a challenging and time-consuming process. To
address this issue, artificial intelligence (AI)-based techniques, particularly
deep learning (DL), have become increasingly popular for systematic feature
extraction and classification from imaging modalities, thereby aiding doctors
in making rapid and accurate diagnoses. In this review study, we will focus on
how AI-based approaches, particularly the use of Convolutional Neural Networks
(CNN), can assist in disease detection through medical imaging technology. CNN
is a commonly used approach for image analysis due to its ability to extract
features from raw input images, and as such, will be the primary area of
discussion in this study. Therefore, we have considered CNN as our discussion
area in this study to diagnose ailments using medical imaging technology.
Related papers
- A novel approach towards the classification of Bone Fracture from Musculoskeletal Radiography images using Attention Based Transfer Learning [0.0]
We deploy an attention-based transfer learning model to detect bone fractures in X-ray scans.
Our model achieves a state-of-the-art accuracy of more than 90% in fracture classification.
arXiv Detail & Related papers (2024-10-18T19:07:24Z) - Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions [0.0]
Recent breakthroughs in deep learning, a subset of artificial intelligence, have markedly revolutionized the analysis of medical pictures.
CNNs have demonstrated remarkable proficiency in autonomously learning features from multidimensional medical pictures.
These models have been utilized across multiple medical disciplines, including pathology, radiology, ophthalmology, and cardiology.
arXiv Detail & Related papers (2024-10-18T02:57:14Z) - Empowering Medical Imaging with Artificial Intelligence: A Review of
Machine Learning Approaches for the Detection, and Segmentation of COVID-19
Using Radiographic and Tomographic Images [2.232567376976564]
Since 2019, the global dissemination of the Coronavirus and its novel strains has resulted in a surge of new infections.
The use of X-ray and computed tomography (CT) imaging techniques is critical in diagnosing and managing COVID-19.
This paper focuses on the methodological approach of using machine learning (ML) to enhance medical imaging for COVID-19 diagnosis.
arXiv Detail & Related papers (2024-01-13T09:17:39Z) - Object Detection for Automated Coronary Artery Using Deep Learning [0.0]
In our paper, we utilize the object detection method on X-ray angiography images to precisely identify the location of coronary artery stenosis.
This model enables automatic and real-time detection of stenosis locations, assisting in the crucial and sensitive decision-making process.
arXiv Detail & Related papers (2023-12-19T13:14:52Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - Online learning for X-ray, CT or MRI [6.211286162347693]
Medical imaging plays an important role in the medical sector in identifying diseases.
In recent years, medical professionals have started adopting Computer-Aided Diagnosis (CAD) systems to evaluate medical images.
Medical research is already entered a new era of research which is called Artificial Intelligence (AI)
arXiv Detail & Related papers (2023-06-10T17:14:41Z) - Follow My Eye: Using Gaze to Supervise Computer-Aided Diagnosis [54.60796004113496]
We demonstrate that the eye movement of radiologists reading medical images can be a new form of supervision to train the DNN-based computer-aided diagnosis (CAD) system.
We record the tracks of the radiologists' gaze when they are reading images.
The gaze information is processed and then used to supervise the DNN's attention via an Attention Consistency module.
arXiv Detail & Related papers (2022-04-06T08:31:05Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
Histopathological images (HIs) are the gold standard for evaluating some types of tumors for cancer diagnosis.
One of the ways of accelerating such an analysis is to use computer-aided diagnosis (CAD) systems.
arXiv Detail & Related papers (2021-02-07T19:12:32Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.