Quantum Decomposition Algorithm For Master Equations of Stochastic
Processes: The Damped Spin Case
- URL: http://arxiv.org/abs/2207.02755v3
- Date: Sun, 8 Jan 2023 14:16:50 GMT
- Title: Quantum Decomposition Algorithm For Master Equations of Stochastic
Processes: The Damped Spin Case
- Authors: M. W. AlMasri, M. R. B. Wahiddin
- Abstract summary: We introduce a quantum decomposition algorithm (QDA) that decomposes the problem $fracpartial rhopartial t=mathcalLrho=lambda rho$ into a summation of eigenvalues times phase-space variables.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce a quantum decomposition algorithm (QDA) that decomposes the
problem $\frac{\partial \rho}{\partial t}=\mathcal{L}\rho=\lambda \rho$ into a
summation of eigenvalues times phase-space variables. One interesting feature
of QDA stems from its ability to simulate damped spin systems by means of pure
quantum harmonic oscillators adjusted with the eigenvalues of the original
eigenvalue problem. We test the proposed algorithm in the case of undriven
qubit with spontaneous emission and dephasing.
Related papers
- Variational quantum algorithm for generalized eigenvalue problems of non-Hermitian systems [6.752287704489559]
We propose a variational quantum algorithm for solving generalized eigenvalue problems in non-Hermitian systems.<n>We numerically validate the algorithm's performance through simulations and demonstrate its application to generalized eigenvalue problems in ocean acoustics.
arXiv Detail & Related papers (2025-07-07T08:59:16Z) - Quantum algorithm for solving generalized eigenvalue problems with application to the Schrödinger equation [0.0]
Estimating excited-state energies is challenging for classical algorithms due to exponential scaling with system size.<n>We present a quantum algorithm for estimating eigenvalues and singular values of parameterized matrix families.
arXiv Detail & Related papers (2025-06-16T14:24:30Z) - Explicit near-optimal quantum algorithm for solving the advection-diffusion equation [0.0]
An explicit quantum algorithm is proposed for modeling dissipative initial-value problems.
We propose a quantum circuit based on a simple coordinate transformation that turns the dependence on the summation index into a trigonometric function.
The proposed algorithm can be used for modeling a wide class of nonunitary initial-value problems.
arXiv Detail & Related papers (2025-01-19T19:03:29Z) - Quantum Noise Suppression in Non-Hermitian Resonators at Exceptional Point [0.0]
We investigate the impact of quantum noise on non-Hermitian resonators at an exceptional point (EP)
The system's irreversible Markovian dynamics is modeled using the Lindblad master equation.
Out of the $mathcalPmathcalT$-symmetric regime, however, the system demonstrates stability within a specific parametric domain.
arXiv Detail & Related papers (2025-01-14T15:13:10Z) - Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
We propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for extraction of low-lying energy states.<n>As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Particle-conserving quantum circuit ansatz with applications in
variational simulation of bosonic systems [0.0]
We introduce the binary encoded multilevel particles circuit ansatz (BEMPA) for use in quantum variational algorithms.
Key insight is to build the circuit blocks by carefully positioning a set of symmetry-preserving 2- and 3-qubit gates.
For a range of model parameters spanning from Mott insulator to superfluid phase, we demonstrate that our proposed circuit ansatz finds the ground state eigenvalues within drastically shorter runtimes.
arXiv Detail & Related papers (2024-02-29T00:21:22Z) - Finding eigenvectors with a quantum variational algorithm [0.0]
This paper presents a hybrid variational quantum algorithm that finds a random eigenvector of a unitary matrix with a known quantum circuit.
The algorithm is based on the SWAP test on trial states generated by a parametrized quantum circuit.
arXiv Detail & Related papers (2023-11-22T17:36:42Z) - A Lie Algebraic Theory of Barren Plateaus for Deep Parameterized Quantum Circuits [37.84307089310829]
Variational quantum computing schemes train a loss function by sending an initial state through a parametrized quantum circuit.
Despite their promise, the trainability of these algorithms is hindered by barren plateaus.
We present a general Lie algebra that provides an exact expression for the variance of the loss function of sufficiently deep parametrized quantum circuits.
arXiv Detail & Related papers (2023-09-17T18:14:10Z) - Randomized semi-quantum matrix processing [0.0]
We present a hybrid quantum-classical framework for simulating generic matrix functions.
The method is based on randomization over the Chebyshev approximation of the target function.
We prove advantages on average depths, including quadratic speed-ups on costly parameters.
arXiv Detail & Related papers (2023-07-21T18:00:28Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum algorithms for the generalized eigenvalue problem [6.111964049119244]
generalized eigenvalue (GE) problems are of particular importance in various areas of science engineering and machine learning.
We present a variational quantum algorithm for finding the desired generalized eigenvalue of the GE problem, $mathcalA|psirangle=lambdamathcalB|psirangle$, by choosing suitable loss functions.
We numerically implement our algorithms to conduct a 2-qubit simulation and successfully find the generalized eigenvalues of the matrix pencil $(mathcalA,,mathcalB)$
arXiv Detail & Related papers (2021-12-05T12:12:49Z) - Spectral Analysis of Product Formulas for Quantum Simulation [0.0]
We show that the Trotter step size needed to estimate an energy eigenvalue within precision can be improved in scaling from $epsilon$ to $epsilon1/2$ for a large class of systems.
Results partially generalize to diabatic processes, which remain in a narrow energy band separated from the rest of the spectrum by a gap.
arXiv Detail & Related papers (2021-02-25T03:17:25Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.