Scoring Rules for Performative Binary Prediction
- URL: http://arxiv.org/abs/2207.02847v1
- Date: Tue, 5 Jul 2022 08:31:24 GMT
- Title: Scoring Rules for Performative Binary Prediction
- Authors: Alan Chan
- Abstract summary: We show through theoretical and numerical results that proper scoring rules can incentivize experts to manipulate the world with their predictions.
We also construct a simple class of scoring rules that avoids this problem.
- Score: 2.111790330664657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We construct a model of expert prediction where predictions can influence the
state of the world. Under this model, we show through theoretical and numerical
results that proper scoring rules can incentivize experts to manipulate the
world with their predictions. We also construct a simple class of scoring rules
that avoids this problem.
Related papers
- In Defense of Defensive Forecasting [13.174466095224403]
This tutorial provides a survey of algorithms for Defensive Forecasting, where predictions are derived not by prognostication but by correcting past mistakes.<n>We derive simple, near-optimal algorithms for online learning, calibration, prediction with expert advice, and online conformal prediction.
arXiv Detail & Related papers (2025-06-13T14:57:19Z) - Learning to Partially Defer for Sequences [17.98959620987217]
We present an L2D setting for sequence outputs where the system can defer specific outputs of the whole model prediction to an expert.
We also empirically demonstrate that such granular deferrals achieve better cost-accuracy tradeoffs than whole deferrals on Traveling salesman solvers and News summarization models.
arXiv Detail & Related papers (2025-02-03T15:50:11Z) - Consistency Checks for Language Model Forecasters [54.62507816753479]
We measure the performance of forecasters in terms of the consistency of their predictions on different logically-related questions.
We build an automated evaluation system that generates a set of base questions, instantiates consistency checks from these questions, elicits predictions of the forecaster, and measures the consistency of the predictions.
arXiv Detail & Related papers (2024-12-24T16:51:35Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Towards Human-AI Complementarity with Prediction Sets [14.071862670474832]
Decision support systems based on prediction sets have proven to be effective at helping human experts solve classification tasks.
We show that the prediction sets constructed using conformal prediction are, in general, suboptimal in terms of average accuracy.
We introduce a greedy algorithm that, for a large class of expert models and non-optimal scores, is guaranteed to find prediction sets that provably offer equal or greater performance.
arXiv Detail & Related papers (2024-05-27T18:00:00Z) - Designing Decision Support Systems Using Counterfactual Prediction Sets [15.121082690769525]
Decision support systems for classification tasks are predominantly designed to predict the value of the ground truth labels.
This paper revisits the design of this type of systems from the perspective of online learning.
We develop a methodology that does not require, nor assumes, an expert model.
arXiv Detail & Related papers (2023-06-06T18:00:09Z) - Incentivizing honest performative predictions with proper scoring rules [4.932130498861987]
We say a prediction is a fixed point if it accurately reflects the expert's beliefs after that prediction has been made.
We show that, for binary predictions, if the influence of the expert's prediction on outcomes is bounded, it is possible to define scoring rules under which optimal reports are arbitrarily close to fixed points.
arXiv Detail & Related papers (2023-05-28T00:53:26Z) - On Second-Order Scoring Rules for Epistemic Uncertainty Quantification [8.298716599039501]
We show that there seems to be no loss function that provides an incentive for a second-order learner to faithfully represent its uncertainty.
As a main mathematical tool to prove this result, we introduce the generalised notion of second-order scoring rules.
arXiv Detail & Related papers (2023-01-30T08:59:45Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
We work to understand the gains and peculiarities of planning employed as forethought via forward models or as hindsight operating with backward models.
We investigate the best use of models in planning, primarily focusing on the selection of states in which predictions should be (re)-evaluated.
arXiv Detail & Related papers (2020-10-26T16:00:47Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Malicious Experts versus the multiplicative weights algorithm in online
prediction [85.62472761361107]
We consider a prediction problem with two experts and a forecaster.
We assume that one of the experts is honest and makes correct prediction with probability $mu$ at each round.
The other one is malicious, who knows true outcomes at each round and makes predictions in order to maximize the loss of the forecaster.
arXiv Detail & Related papers (2020-03-18T20:12:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.