On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
- URL: http://arxiv.org/abs/2301.12736v1
- Date: Mon, 30 Jan 2023 08:59:45 GMT
- Title: On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
- Authors: Viktor Bengs and Eyke H\"ullermeier and Willem Waegeman
- Abstract summary: We show that there seems to be no loss function that provides an incentive for a second-order learner to faithfully represent its uncertainty.
As a main mathematical tool to prove this result, we introduce the generalised notion of second-order scoring rules.
- Score: 8.298716599039501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well known that accurate probabilistic predictors can be trained
through empirical risk minimisation with proper scoring rules as loss
functions. While such learners capture so-called aleatoric uncertainty of
predictions, various machine learning methods have recently been developed with
the goal to let the learner also represent its epistemic uncertainty, i.e., the
uncertainty caused by a lack of knowledge and data. An emerging branch of the
literature proposes the use of a second-order learner that provides predictions
in terms of distributions on probability distributions. However, recent work
has revealed serious theoretical shortcomings for second-order predictors based
on loss minimisation. In this paper, we generalise these findings and prove a
more fundamental result: There seems to be no loss function that provides an
incentive for a second-order learner to faithfully represent its epistemic
uncertainty in the same manner as proper scoring rules do for standard
(first-order) learners. As a main mathematical tool to prove this result, we
introduce the generalised notion of second-order scoring rules.
Related papers
- Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
Graph Neural Networks (GNNs) use relational information as an inductive bias to enhance the model's accuracy.
As task-relevant relations might be unknown, graph structure learning approaches have been proposed to learn them while solving the downstream prediction task.
arXiv Detail & Related papers (2024-05-30T10:49:22Z) - Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods? [26.344949402398917]
This paper presents novel theoretical insights of evidential deep learning.
It highlights the difficulties in optimizing second-order loss functions.
It provides novel insights into issues of identifiability and convergence in second-order loss minimization.
arXiv Detail & Related papers (2024-02-14T10:07:05Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
Cascades are a classical strategy to enable inference cost to vary adaptively across samples.
A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction.
Despite being oblivious to the structure of the cascade, confidence-based deferral often works remarkably well in practice.
arXiv Detail & Related papers (2023-07-06T04:13:57Z) - On the Difficulty of Epistemic Uncertainty Quantification in Machine
Learning: The Case of Direct Uncertainty Estimation through Loss Minimisation [8.298716599039501]
Uncertainty quantification has received increasing attention in machine learning.
The latter refers to the learner's (lack of) knowledge and appears to be especially difficult to measure and quantify.
We show that loss minimisation does not work for second-order predictors.
arXiv Detail & Related papers (2022-03-11T17:26:05Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Multi-label Chaining with Imprecise Probabilities [0.0]
We present two different strategies to extend the classical multi-label chaining approach to handle imprecise probability estimates.
The main reasons one could have for using such estimations are (1) to make cautious predictions when a high uncertainty is detected in the chaining and (2) to make better precise predictions by avoiding biases caused in early decisions in the chaining.
Our experimental results on missing labels, which investigate how reliable these predictions are in both approaches, indicate that our approaches produce relevant cautiousness on those hard-to-predict instances where the precise models fail.
arXiv Detail & Related papers (2021-07-15T16:43:31Z) - Exploring Uncertainty in Deep Learning for Construction of Prediction
Intervals [27.569681578957645]
We explore the uncertainty in deep learning to construct prediction intervals.
We design a special loss function, which enables us to learn uncertainty without uncertainty label.
Our method correlates the construction of prediction intervals with the uncertainty estimation.
arXiv Detail & Related papers (2021-04-27T02:58:20Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.