論文の概要: Federated Learning based on Self-Evolving Gaussian Clustering
- arxiv url: http://arxiv.org/abs/2508.15393v1
- Date: Thu, 21 Aug 2025 09:32:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 16:26:46.265659
- Title: Federated Learning based on Self-Evolving Gaussian Clustering
- Title(参考訳): 自己進化型ガウスクラスタリングに基づくフェデレーション学習
- Authors: Miha Ožbot, Igor Škrjanc,
- Abstract要約: フェデレートラーニングの文脈において,進化型ファジィシステムを提案する。
従来の方法とは異なり、Federated Learningでは、モデルをクライアントデバイス上でローカルにトレーニングすることが可能で、モデルパラメータのみをデータではなく中央サーバで共有する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we present an Evolving Fuzzy System within the context of Federated Learning, which adapts dynamically with the addition of new clusters and therefore does not require the number of clusters to be selected apriori. Unlike traditional methods, Federated Learning allows models to be trained locally on clients' devices, sharing only the model parameters with a central server instead of the data. Our method, implemented using PyTorch, was tested on clustering and classification tasks. The results show that our approach outperforms established classification methods on several well-known UCI datasets. While computationally intensive due to overlap condition calculations, the proposed method demonstrates significant advantages in decentralized data processing.
- Abstract(参考訳): 本研究では,新たなクラスタの追加によって動的に適応し,アプリオリを選択するクラスタ数を必要としない,フェデレートラーニングの文脈内での進化ファジィシステムを提案する。
従来の方法とは異なり、Federated Learningでは、モデルをクライアントデバイス上でローカルにトレーニングすることが可能で、モデルパラメータのみをデータの代わりに中央サーバで共有する。
PyTorchを用いて実装した本手法はクラスタリングおよび分類タスクでテストした。
その結果,本手法はいくつかのよく知られたUCIデータセットの分類方法よりも優れていた。
重なり合う条件計算により計算集約化されているが,提案手法は分散データ処理において大きな利点を示す。
関連論文リスト
- One-Shot Clustering for Federated Learning [2.8060709233558647]
One-Shot Clustered Federated Learning (OCFL)は、クラスタリングに最も適した瞬間を自動的に検出するクラスタリングに依存しないアルゴリズムである。
本アルゴリズムは,クライアントの勾配のコサイン類似性の計算と,フェデレートモデルが収束し始める温度測定値に基づく。
論文 参考訳(メタデータ) (2025-03-06T09:12:43Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - End-to-end Learnable Clustering for Intent Learning in Recommendation [54.157784572994316]
我々は、アンダーラインELCRecと呼ばれる新しい意図学習手法を提案する。
振る舞い表現学習をUnderlineEnd-to-end UnderlineLearnable UnderlineClusteringフレームワークに統合する。
1億3000万ページビューの産業レコメンデーションシステムに本手法をデプロイし,有望な結果を得る。
論文 参考訳(メタデータ) (2024-01-11T15:22:55Z) - Transferable Deep Clustering Model [14.073783373395196]
本稿では,データサンプルの分布に応じてクラスタセントロイドを自動的に適応できる,転送可能な新しいディープクラスタリングモデルを提案する。
提案手法では, 試料との関係を計測することで, センチロイドを適応できる新しい注意型モジュールを提案する。
合成および実世界の両方のデータセットに対する実験結果から,提案した移動学習フレームワークの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-10-07T23:35:17Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Deep Unfolding-based Weighted Averaging for Federated Learning in
Heterogeneous Environments [11.023081396326507]
フェデレートラーニング(Federated Learning)は、複数のクライアントによるモデル更新と、中央サーバによるアップデートの集約を反復する、協調的なモデルトレーニング手法である。
そこで本研究では, パラメータ調整法として, 深部展開法(deep unfolding)を用いる。
提案手法は,実世界の現実的なタスクを遂行できるような事前学習モデルを用いて,大規模学習モデルを扱うことができる。
論文 参考訳(メタデータ) (2022-12-23T08:20:37Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Meta-learning representations for clustering with infinite Gaussian
mixture models [39.56814839510978]
クラスタリング性能を向上させるためにニューラルネットワークを訓練するメタラーニング手法を提案する。
提案手法は,非ラベルデータとは異なるラベルデータを用いた知識メタ学習を用いて,未ラベルデータをクラスタ化することができる。
論文 参考訳(メタデータ) (2021-03-01T02:05:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。