論文の概要: HierarchicalForecast: A Python Benchmarking Framework for Hierarchical
Forecasting
- arxiv url: http://arxiv.org/abs/2207.03517v1
- Date: Thu, 7 Jul 2022 18:21:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 10:24:45.262747
- Title: HierarchicalForecast: A Python Benchmarking Framework for Hierarchical
Forecasting
- Title(参考訳): hierarchyforecast - 階層予測のためのpythonベンチマークフレームワーク
- Authors: Kin G. Olivares, Federico Garza, David Luo, Cristian Chall\'u and Max
Mergenthaler
- Abstract要約: HierarchicalForecastライブラリには、データセット、評価メトリクス、統計ベースラインモデルのコンパイルされたセットが含まれている。
私たちのPythonベースのフレームワークは、統計学、計量モデル、機械学習予測研究のギャップを埋めることを目的としています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large collections of time series data are commonly organized into
cross-sectional structures with different levels of aggregation; examples
include product and geographical groupings. A necessary condition for coherent
decision-making and planning, with such data sets, is for the dis-aggregated
series' forecasts to add up exactly to the aggregated series forecasts, which
motivates the creation of novel hierarchical forecasting algorithms. The
growing interest of the Machine Learning community in cross-sectional
hierarchical forecasting systems states that we are in a propitious moment to
ensure that scientific endeavors are grounded on sound baselines. For this
reason, we put forward the HierarchicalForecast library, which contains
preprocessed publicly available datasets, evaluation metrics, and a compiled
set of statistical baseline models. Our Python-based framework aims to bridge
the gap between statistical, econometric modeling, and Machine Learning
forecasting research. Code and documentation are available in
https://github.com/Nixtla/hierarchicalforecast.
- Abstract(参考訳): 時系列データの大規模なコレクションは、一般的に、異なるレベルの集約を持つ断面構造に分類される。
このようなデータセットとコヒーレントな意思決定と計画に必要条件は、分散されたシリーズの予測が、新しい階層的予測アルゴリズムの作成を動機づける集約されたシリーズ予測に正確に付加されることである。
横断的な階層的予測システムにおける機械学習コミュニティの関心の高まりは、科学的な取り組みが音のベースラインに根ざされていることを確実にするために、私たちは提案的な瞬間にいることを述べています。
このため、我々はHierarchicalForecastライブラリを提出した。このライブラリには、公開データセット、評価メトリクス、統計ベースラインモデルのコンパイルされたセットが含まれている。
Pythonベースのフレームワークは、統計、計量モデル、機械学習予測研究のギャップを埋めることを目的としています。
コードとドキュメントはhttps://github.com/nixtla/hierarchicalforecastで入手できる。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
時系列基礎モデルはゼロショット予測に優れ、明示的なトレーニングなしで多様なタスクを処理する。
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントの23のデータセットが含まれている。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Hierarchically Coherent Multivariate Mixture Networks [11.40498954142061]
確率的コヒーレント予測(probabilistic coherent forecasting)は、アグリゲーションのレベルにわたって一貫性のある予測を生成する。
我々は、時系列の関係を捉えるために、複合的可能性目的でネットワークを最適化する。
我々のアプローチでは、最先端のベースラインと比較して、ほとんどのデータセットの平均精度が13.2%向上している。
論文 参考訳(メタデータ) (2023-05-11T18:52:11Z) - MECATS: Mixture-of-Experts for Quantile Forecasts of Aggregated Time
Series [11.826510794042548]
我々はtexttMECATS という異種の専門家フレームワークを混合して導入する。
集約階層を通じて関連付けられた時系列の集合の値を同時に予測する。
異なる種類の予測モデルを個別の専門家として使用することで、各モデルの形式を対応する時系列の性質に合わせて調整することができる。
論文 参考訳(メタデータ) (2021-12-22T05:05:30Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Probabilistic Hierarchical Forecasting with Deep Poisson Mixtures [2.1670528702668648]
本稿では,信頼性の高い階層情報が存在する場合に,時系列の正確で一貫性のある確率予測を行う新しい手法を提案する。
私たちはそれをDeep Poisson Mixture Network(DPMN)と呼ぶ。
ニューラルネットワークと階層時系列構造の結合分布の統計モデルの組み合わせに依存している。
論文 参考訳(メタデータ) (2021-10-25T18:02:03Z) - Hierarchically Regularized Deep Forecasting [18.539846932184012]
本稿では,グローバルな時系列集合に沿って時系列を分解した階層予測のための新しい手法を提案する。
過去の手法とは異なり、我々の手法は時系列予測の一貫性を維持しつつ、推論時にスケーラブルである。
論文 参考訳(メタデータ) (2021-06-14T17:38:16Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
本研究は,パブリックおよび新規な商用データ集合を用いて,アナリストがユーザベースをクラスタリングし,詳細なレベルで需要を計画できることを示す。
本研究は,TDAに基づく時系列クラスタリングと行列因数分解法によるクラスタ回帰を実践者にとって実行可能なツールとして導入することを目的とする。
論文 参考訳(メタデータ) (2020-09-08T12:10:10Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
階層時系列を予測するための機械学習手法を提案する。
予測整合は予測を調整し、階層をまたいで一貫性を持たせるプロセスである。
我々は、階層構造をキャプチャする情報を抽出するディープニューラルネットワークの能力を利用する。
論文 参考訳(メタデータ) (2020-05-31T22:26:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。