Variational Quantum Computation of Molecular Linear Response Properties
on a Superconducting Quantum Processor
- URL: http://arxiv.org/abs/2201.02426v3
- Date: Tue, 27 Sep 2022 02:38:23 GMT
- Title: Variational Quantum Computation of Molecular Linear Response Properties
on a Superconducting Quantum Processor
- Authors: Kaixuan Huang, Xiaoxia Cai, Hao Li, Zi-Yong Ge, Ruijuan Hou, Hekang
Li, Tong Liu, Yunhao Shi, Chitong Chen, Dongning Zheng, Kai Xu, Zhi-Bo Liu,
Zhendong Li, Heng Fan, Wei-Hai Fang
- Abstract summary: We introduce a pragmatic variational quantum response (VQR) algorithm for response properties, which circumvents the need for deep quantum circuits.
We report the first simulation of linear response properties of molecules including dynamic polarizabilities and absorption spectra on a superconducting quantum processor.
- Score: 20.69554086981598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating response properties of molecules is crucial for interpreting
experimental spectroscopies and accelerating materials design. However, it
remains a long-standing computational challenge for electronic structure
methods on classical computers. While quantum computers hold the promise to
solve this problem more efficiently in the long run, existing quantum
algorithms requiring deep quantum circuits are infeasible for near-term noisy
quantum processors. Here, we introduce a pragmatic variational quantum response
(VQR) algorithm for response properties, which circumvents the need for deep
quantum circuits. Using this algorithm, we report the first simulation of
linear response properties of molecules including dynamic polarizabilities and
absorption spectra on a superconducting quantum processor. Our results indicate
that a large class of important dynamical properties such as Green's functions
are within the reach of near-term quantum hardware using this algorithm in
combination with suitable error mitigation techniques.
Related papers
- Quantum Embedding of Non-local Quantum Many-body Interactions in Prototypal Anti-tumor Vaccine Metalloprotein on Near Term Quantum Computing Hardware [4.8962578963959675]
We present for the first time a quantum computer model simulation of a complex hemocyanin molecule.
Hemocyanin is an important respiratory protein involved in various physiological processes.
We conclude that the magnetic structure of hemocyanin is largely influenced by the many-body correction.
arXiv Detail & Related papers (2024-10-16T16:49:42Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers [0.0]
We present a study of quantum linear response theory obtaining spectroscopic properties on simulated fault-tolerant quantum computers.
This work introduces novel metrics to analyze and predict the origins of noise in the quantum algorithm.
We highlight the significant impact of Pauli saving in reducing measurement costs and noise.
arXiv Detail & Related papers (2024-08-17T23:46:17Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - A full circuit-based quantum algorithm for excited-states in quantum
chemistry [6.973166066636441]
We propose a non-variational full circuit-based quantum algorithm for obtaining the excited-state spectrum of a quantum chemistry Hamiltonian.
Compared with previous classical-quantum hybrid variational algorithms, our method eliminates the classical optimization process.
The algorithm can be widely applied to various Hamiltonian spectrum determination problems on the fault-tolerant quantum computers.
arXiv Detail & Related papers (2021-12-28T15:48:09Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum computation of silicon electronic band structure [0.0]
We show that unprecedented methods used in quantum chemistry, designed to simulate molecules on quantum processors, can be extended to calculate properties of periodic solids.
In particular, we present minimal depth circuits implementing the variational quantum eigensolver algorithm and successfully use it to compute the band structure of silicon on a quantum machine for the first time.
arXiv Detail & Related papers (2020-06-06T07:45:06Z) - Quantum computation of molecular response properties [12.66895275733527]
We propose an algorithm for computing linear and nonlinear molecular response properties on quantum computers.
On the other hand, we introduce a variational hybrid quantum-classical variant of the proposed algorithm, which is more practical for near-term quantum devices.
arXiv Detail & Related papers (2020-01-10T12:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.