論文の概要: Seasonal Encoder-Decoder Architecture for Forecasting
- arxiv url: http://arxiv.org/abs/2207.04113v1
- Date: Fri, 8 Jul 2022 20:06:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-12 12:57:26.608445
- Title: Seasonal Encoder-Decoder Architecture for Forecasting
- Title(参考訳): 予測のための季節エンコーダデコーダアーキテクチャ
- Authors: Avinash Achar, Soumen Pachal
- Abstract要約: 本稿では,季節相関をインテリジェントに捉えた新しいRNNアーキテクチャを提案する。
それはよく知られたエンコーダ・デコーダ(ED)アーキテクチャと乗法的季節自動回帰モデルから動機付けられている。
単一または複数のシーケンスデータに使用できる。
- 参考スコア(独自算出の注目度): 1.9188864062289432
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning (DL) in general and Recurrent neural networks (RNNs) in
particular have seen high success levels in sequence based applications. This
paper pertains to RNNs for time series modelling and forecasting. We propose a
novel RNN architecture capturing (stochastic) seasonal correlations
intelligently while capable of accurate multi-step forecasting. It is motivated
from the well-known encoder-decoder (ED) architecture and multiplicative
seasonal auto-regressive model. It incorporates multi-step (multi-target)
learning even in the presence (or absence) of exogenous inputs. It can be
employed on single or multiple sequence data. For the multiple sequence case,
we also propose a novel greedy recursive procedure to build (one or more)
predictive models across sequences when per-sequence data is less. We
demonstrate via extensive experiments the utility of our proposed architecture
both in single sequence and multiple sequence scenarios.
- Abstract(参考訳): 一般的にはディープラーニング(DL)、特にリカレントニューラルネットワーク(RNN)はシーケンスベースのアプリケーションで高い成功率を示している。
本稿では時系列モデリングと予測のためのRNNについて述べる。
高精度なマルチステップ予測が可能でありながら、季節相関をインテリジェントに捉える新しいRNNアーキテクチャを提案する。
それはよく知られたエンコーダ・デコーダ(ED)アーキテクチャと乗法的季節自動回帰モデルから動機付けられている。
外部入力の存在(または不在)においても、マルチステップ(マルチターゲット)学習を取り入れている。
単一のシーケンスデータや複数のシーケンスデータで使用できる。
また,複数シーケンスの場合に対して,シーケンス毎のデータ量が少ない場合の予測モデルを構築するための新しい欲望再帰的手法を提案する。
提案するアーキテクチャの実用性は,大規模な実験を通じて,単一シーケンスと複数シーケンスのシナリオで実証する。
関連論文リスト
- SequenceMatch: Imitation Learning for Autoregressive Sequence Modelling with Backtracking [60.109453252858806]
MLE(Maxum-likelihood)の目的は、高品質なシーケンスを自動回帰的に生成する下流のユースケースと一致しない。
我々は、模倣学習(IL)問題としてシーケンス生成を定式化する。
これにより、自己回帰モデルによって生成されるシーケンスの分布とデータセットからのシーケンスとの差異を最小化できる。
得られた手法であるSequenceMatchは、敵の訓練やアーキテクチャの変更なしに実装できる。
論文 参考訳(メタデータ) (2023-06-08T17:59:58Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - DeepSeq: Deep Sequential Circuit Learning [10.402436619244911]
回路表現学習は電子設計自動化(EDA)分野における有望な研究方向である。
既存のソリューションは組合せ回路のみをターゲットにしており、その応用は著しく制限されている。
シーケンシャルネットリストのための新しい表現学習フレームワークであるDeepSeqを提案する。
論文 参考訳(メタデータ) (2023-02-27T09:17:35Z) - Sequence Prediction Under Missing Data : An RNN Approach Without
Imputation [1.9188864062289432]
本稿では,新しいリカレント・ネットワーク(RNN)を用いたシーケンス予測手法について述べる。
モデル構築の前後でデータをインプットすることなく、データの不足パターンを直接エンコードしようとします。
ここでは、入力が存在する場合に、多段階予測の一般的な文脈で予測することに焦点を当てる。
論文 参考訳(メタデータ) (2022-08-18T16:09:12Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
時系列データ(英: time series)とは、時系列データの一種で、時系列で記録された観測の集合である。
既存のディープラーニング技術では、時系列解析にジェネリックシーケンスモデルを使用しており、そのユニークな性質を無視している。
本稿では,新しいニューラルネットワークアーキテクチャを提案し,時系列予測問題に適用し,時間的モデリングのための複数の解像度でサンプル畳み込みと相互作用を行う。
論文 参考訳(メタデータ) (2021-06-17T08:15:04Z) - Boosted Embeddings for Time Series Forecasting [0.6042845803090501]
新たな時系列予測モデルであるDeepGBを提案する。
我々は,弱い学習者が反復よりも漸進的に重みがみられるdnnである勾配ブースティングの変種を定式化し,実装する。
本モデルが実世界センサーデータと公開データセットを用いて既存の同等の最新モデルを上回ることを実証した。
論文 参考訳(メタデータ) (2021-04-10T14:38:11Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Zero-shot and few-shot time series forecasting with ordinal regression
recurrent neural networks [17.844338213026976]
リカレントニューラルネットワーク(RNN)は、いくつかのシーケンシャルな学習タスクにおいて最先端である。
本稿では,多くの量子化された時系列の空間上に埋め込まれた共有特徴を学習することにより,この問題に直接対処する新しいRNNモデルを提案する。
これにより、トレーニングデータが少ない場合であっても、RNNフレームワークが不適切な時系列を正確かつ確実に予測できることを示す。
論文 参考訳(メタデータ) (2020-03-26T21:33:10Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。