Efficient Depth Selection for the Implementation of Noisy Quantum
Approximate Optimization Algorithm
- URL: http://arxiv.org/abs/2207.04263v1
- Date: Sat, 9 Jul 2022 13:07:21 GMT
- Title: Efficient Depth Selection for the Implementation of Noisy Quantum
Approximate Optimization Algorithm
- Authors: Yu Pan, Yifan Tong, Shibei Xue, Guofeng Zhang
- Abstract summary: Noise on near-term quantum devices will inevitably limit the performance of Quantum Approximate Optimization Algorithm (QAOA)
We propose to use the model selection algorithm to identify the optimal depth with a few iterations of regularization parameters.
Numerical experiments show that the algorithm can efficiently locate the optimal depth under relaxation and dephasing noises.
- Score: 2.7443146049647984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Noise on near-term quantum devices will inevitably limit the performance of
Quantum Approximate Optimization Algorithm (QAOA). One significant consequence
is that the performance of QAOA may fail to monotonically improve with depth.
In particular, optimal depth can be found at a certain point where the noise
effects just outweigh the benefits brought by increasing the depth. In this
work, we propose to use the model selection algorithm to identify the optimal
depth with a few iterations of regularization parameters. Numerical experiments
show that the algorithm can efficiently locate the optimal depth under
relaxation and dephasing noises.
Related papers
- A Noise-Aware Scalable Subspace Classical Optimizer for the Quantum Approximate Optimization Algorithm [0.9086201982977716]
ANASTAARS is a noise-aware scalable classical algorithm for variational quantum algorithms.<n>It exploits adaptive random subspace strategies to efficiently optimize the ansatz parameters of a quantum approximate optimization algorithm.
arXiv Detail & Related papers (2025-07-15T05:15:25Z) - Adam assisted Fully informed Particle Swarm Optimization ( Adam-FIPSO ) based Parameter Prediction for the Quantum Approximate Optimization Algorithm (QAOA) [1.024113475677323]
The Quantum Approximate Optimization Algorithm (QAOA) is a prominent variational algorithm used for solving optimization problems such as the Max-Cut problem.<n>A key challenge in QAOA lies in efficiently identifying suitable parameters that lead to high-quality solutions.
arXiv Detail & Related papers (2025-06-07T13:14:41Z) - Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization [66.51747366239299]
We propose a smooth variant of the min-max problem based on the augmented Lagrangian.
The proposed algorithm scales better with the number of objectives than subgradient-based strategies.
arXiv Detail & Related papers (2025-03-16T11:05:51Z) - MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit immense potential in tackling optimization challenges.
The requisite circuit depth for satisfactory performance is problem-specific and often exceeds the maximum capability of current quantum devices.
We introduce the Mixer Generator Network (MG-Net), a unified deep learning framework adept at dynamically formulating optimal mixer Hamiltonians.
arXiv Detail & Related papers (2024-09-27T12:28:18Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Improving Quantum Approximate Optimization by Noise-Directed Adaptive Remapping [3.47862118034022]
Noise-Directed Remapping (NDAR) is a algorithm for approximately solving binary optimization problems by leveraging certain types of noise.
We consider access to a noisy quantum processor with dynamics that features a global attractor state.
Our algorithm bootstraps the noise attractor state by iteratively gauge-transforming the cost-function Hamiltonian in a way that transforms the noise attractor into higher-quality solutions.
arXiv Detail & Related papers (2024-04-01T18:28:57Z) - Multiscale Quantum Approximate Optimization Algorithm [0.0]
The quantum approximate optimization algorithm (QAOA) is one of the canonical algorithms designed to find approximate solutions to optimization problems.
We propose a new version of QAOA that incorporates the capabilities of QAOA and the real-space renormalization group transformation.
arXiv Detail & Related papers (2023-12-11T07:47:16Z) - Trainability Analysis of Quantum Optimization Algorithms from a Bayesian
Lens [2.9356265132808024]
We show that a noiseless QAOA circuit with a depth of $tildemathtlog nright)$ can be trained efficiently.
Our results offer theoretical performance of quantum algorithms in the noisy intermediate-scale quantum era.
arXiv Detail & Related papers (2023-10-10T02:56:28Z) - QAOA Performance in Noisy Devices: The Effect of Classical Optimizers and Ansatz Depth [0.32985979395737786]
The Quantum Approximate Optimization Algorithm (QAOA) is a variational quantum algorithm for Near-term Intermediate-Scale Quantum computers (NISQ)
This paper presents an investigation into the impact realistic noise on the classical vectors.
We find that while there is no significant difference in the performance of classicals in a state simulation, the Adam and AMSGrads perform best in the presence of shot noise.
arXiv Detail & Related papers (2023-07-19T17:22:44Z) - Automatic Depth Optimization for Quantum Approximate Optimization
Algorithm [26.4589898848196]
Quantum Approximate Optimization Algorithm (QAOA) is a hybrid algorithm whose control parameters are classically optimized.
In this paper we investigate the control depth selection with an automatic algorithm based on gradient descent.
The proposed algorithm can be used as an efficient tool for choosing the appropriate control depth as a replacement of random search or empirical rules.
arXiv Detail & Related papers (2022-06-29T05:48:16Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.