論文の概要: Building Open Knowledge Graph for Metal-Organic Frameworks (MOF-KG):
Challenges and Case Studies
- arxiv url: http://arxiv.org/abs/2207.04502v1
- Date: Sun, 10 Jul 2022 16:41:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-13 04:55:18.670664
- Title: Building Open Knowledge Graph for Metal-Organic Frameworks (MOF-KG):
Challenges and Case Studies
- Title(参考訳): 金属有機フレームワーク(MOF-KG)のためのオープン知識グラフの構築 : 課題と事例研究
- Authors: Yuan An, Jane Greenberg, Xintong Zhao, Xiaohua Hu, Scott McCLellan,
Alex Kalinowski, Fernando J. Uribe-Romo, Kyle Langlois, Jacob Furst, Diego A.
G\'omez-Gualdr\'on, Fernando Fajardo-Rojas, Katherine Ardila
- Abstract要約: 金属有機フレームワーク(MOF)は、ガス貯蔵、分子分離、化学センシング、結晶および薬物のデリバリーといった応用に革命をもたらす大きな可能性を持っている。
ケンブリッジ構造データベース(CSD)は10,636個のMOF結晶を報告しており、これには114,373個のMOF構造が含まれる。
本稿では,MOF予測,発見,合成を容易にする知識グラフ手法の活用に向けた取り組みについて述べる。
- 参考スコア(独自算出の注目度): 87.50708736281986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metal-Organic Frameworks (MOFs) are a class of modular, porous crystalline
materials that have great potential to revolutionize applications such as gas
storage, molecular separations, chemical sensing, catalysis, and drug delivery.
The Cambridge Structural Database (CSD) reports 10,636 synthesized MOF crystals
which in addition contains ca. 114,373 MOF-like structures. The sheer number of
synthesized (plus potentially synthesizable) MOF structures requires
researchers pursue computational techniques to screen and isolate MOF
candidates. In this demo paper, we describe our effort on leveraging knowledge
graph methods to facilitate MOF prediction, discovery, and synthesis. We
present challenges and case studies about (1) construction of a MOF knowledge
graph (MOF-KG) from structured and unstructured sources and (2) leveraging the
MOF-KG for discovery of new or missing knowledge.
- Abstract(参考訳): 金属有機フレームワーク(英: Metal-Organic Frameworks、MOF)は、ガス貯蔵、分子分離、化学センシング、触媒、薬物の放出といった応用に革命をもたらす大きな可能性を持つモジュラーで多孔質の結晶材料である。
ケンブリッジ構造データベース (CSD) は、10,636個の合成MOF結晶を報告している。
114,373基のMOF構造。
合成された(さらに合成可能な)MOF構造は、研究者がMOF候補のスクリーニングと分離を行うための計算技術を追求する必要がある。
本稿では,MOF予測,発見,合成を容易にする知識グラフ手法の活用に向けた取り組みについて述べる。
本稿では,(1)構造化及び非構造化ソースからMOF知識グラフ(MOF-KG)を構築すること,(2)新しい知識の発見にMOF-KGを活用することの課題と事例について述べる。
関連論文リスト
- MOFFlow: Flow Matching for Structure Prediction of Metal-Organic Frameworks [42.61784133509237]
金属-有機フレームワーク(英: Metal-organic framework、MOF)は、炭素捕獲や薬物の放出といった多くの分野で有望な応用を持つ結晶材料のクラスである。
ab initio計算や深い生成モデルを含む既存のアプローチは、単位セル内の多くの原子のためにMOF構造が複雑になるのに苦労している。
我々はMOF構造予測に適した最初の深部生成モデルMOFFlowを紹介する。
論文 参考訳(メタデータ) (2024-10-07T13:51:58Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
全分子の逆折り畳みのための統一モデルUniIFを提案する。
提案手法は,全タスクにおける最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-05-29T10:26:16Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design [4.819734936375677]
金属-有機フレームワーク(MOF)は、ガス貯蔵や炭素捕獲といった応用に非常に関心がある。
CGMOF構造を生成する粗粒拡散モデルMOFDiffを提案する。
有効かつ斬新なMOF構造の生成能力と優れたMOF材料の設計における有効性を評価する。
論文 参考訳(メタデータ) (2023-10-16T18:00:15Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
化学構造を視覚的に認識するためにMolGrapherを導入する。
すべての候補原子と結合をノードとして扱い、それらをグラフ化する。
グラフニューラルネットワークを用いてグラフ内の原子と結合ノードを分類する。
論文 参考訳(メタデータ) (2023-08-23T16:16:11Z) - A generative artificial intelligence framework based on a molecular
diffusion model for the design of metal-organic frameworks for carbon capture [3.7693836475281297]
GHP-MOFassembleは、CO2容量と合成可能なリンカーを備えたMOFの合理的かつ迅速な設計のための生成人工知能フレームワークである。
GHP-MOFassembleは、一意性、合成可能性、構造的妥当性のためにAI生成のMOFをスクリーンし、検証する。
仮説MOFデータセットの96.9%以上の2$m mol/g$以上のCO2容量を持つAI生成MOFの上位6つを提示する。
論文 参考訳(メタデータ) (2023-06-14T18:32:26Z) - MOFormer: Self-Supervised Transformer model for Metal-Organic Framework
Property Prediction [7.367477168940467]
金属有機フレームワーク(英: Metal-Organic Frameworks、MOFs)は、エネルギー貯蔵、脱塩、ガス貯蔵、ガス分離などの用途に使用できる多孔質材料である。
特定のアプリケーションに最適なMOFを見つけるには、膨大な数の候補を効率よく正確に探索する必要がある。
そこで本研究では,MOFの特性予測のために,MOFormerと呼ばれるトランスフォーマーモデルに基づく構造に依存しないディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-10-25T17:29:42Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Graph Neural Network for Metal Organic Framework Potential Energy
Approximation [0.4588028371034407]
金属-有機フレームワーク(英: Metal-organic framework、MOF)は、金属イオンと有機リンカーからなるナノ多孔質化合物である。
グラフニューラルネットワークを用いて候補MOFのポテンシャルエネルギーを推定する機械学習手法を提案する。
DFTを用いて、5万の空間構成と高品質なポテンシャルエネルギー値のデータベースを生成する。
論文 参考訳(メタデータ) (2020-10-29T19:47:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。