論文の概要: A Dual-Polarization Information Guided Network for SAR Ship
Classification
- arxiv url: http://arxiv.org/abs/2207.04639v1
- Date: Mon, 11 Jul 2022 05:47:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-13 00:54:55.739854
- Title: A Dual-Polarization Information Guided Network for SAR Ship
Classification
- Title(参考訳): SAR船舶分類のための双極化情報案内ネットワーク
- Authors: Tianwen Zhang, and Xiaoling Zhang
- Abstract要約: そこで本稿では,DPIG-Net(Double-polarization information guided Network)を提案する。
本稿では, 偏光をフル活用して合成開口レーダ(SAR)の船種分類を強化する方法について検討する。
- 参考スコア(独自算出の注目度): 4.232332676611087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How to fully utilize polarization to enhance synthetic aperture radar (SAR)
ship classification remains an unresolved issue. Thus, we propose a
dual-polarization information guided network (DPIG-Net) to solve it.
- Abstract(参考訳): 偏光を完全に活用して合成開口レーダ(SAR)船の分類を強化する方法は未解決の問題である。
そこで本稿では,DPIG-Net(Double-polarization information guided Network)を提案する。
関連論文リスト
- Multi-scale direction-aware SAR object detection network via global information fusion [18.997878517911378]
本稿では,SARオブジェクト検出における方向認識情報のグローバルな融合を目的とした新しいフレームワークであるSAR-Netを提案する。
UCMとDAMは効率的なグローバル情報融合と伝送を可能にする。
実験は、SAR-Netの有効性を示し、航空機や船舶のデータセットに対して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-28T10:40:11Z) - Dual-stream contrastive predictive network with joint handcrafted
feature view for SAR ship classification [9.251342335645765]
本稿では,新しいデュアルストリームコントラスト予測ネットワーク(DCPNet)を提案する。
最初のタスクは正のサンプルペアを構築し、コアエンコーダにより一般的な表現を学習させることである。
第2の課題は, 深部特徴と手話特徴との対応を適応的に把握し, モデル内での知識伝達を実現し, 特徴融合による冗長性を効果的に改善することである。
論文 参考訳(メタデータ) (2023-11-26T05:47:01Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion [7.323279438948967]
本稿では,ニューラルネットワークによる合成開口レーダ(SAR)画像から,事実上有意義な船舶検出問題について検討する。
本稿では,CentralNetに基づく双方向協調注意(BCA)とMRF(Multi- resolution Feature Fusion)を新たに開発したSAR-ShipNet(略してSAR-ShipNet)を提案する。
パブリックなSAR-Shipデータセットの実験結果から,SAR-ShipNetは速度と精度の両面で競争上の優位性を達成していることがわかった。
論文 参考訳(メタデータ) (2022-03-29T12:27:04Z) - Unpaired Image Super-Resolution with Optimal Transport Maps [128.1189695209663]
実世界の画像超解像(SR)タスクは、しばしば、教師付き技術の適用を制限するペアデータセットを持っていない。
本稿では,非バイアスのOTマップを知覚輸送コストで学習する未ペアSRのアルゴリズムを提案する。
我々のアルゴリズムは、大規模無人AIM-19データセット上で、最先端のパフォーマンスをほぼ提供する。
論文 参考訳(メタデータ) (2022-02-02T16:21:20Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
本稿では,無人航空機(MUAV)搭載のIoT(Internet of Things)ネットワークについて検討する。
本稿では、インテリジェント反射面(IRS)を備えた充電可能な補助UAV(AUAV)を用いて、MUAVからの通信信号を強化することを提案する。
提案モデルでは,IoTネットワークの蓄積スループットを最大化するために,これらのエネルギー制限されたUAVの最適協調戦略について検討する。
論文 参考訳(メタデータ) (2021-12-20T15:45:28Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Fully Polarimetric SAR and Single-Polarization SAR Image Fusion Network [8.227845719405051]
完全偏光合成開口レーダ(PolSAR)と単偏光合成開口レーダSAR(SinSAR)画像融合ネットワークを提案する。
偏光分解と偏光シグネチャの実験は、偏光情報がよく維持されていることを示している。
論文 参考訳(メタデータ) (2021-07-18T03:51:04Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
無人航空機(UAV)無線ネットワークにおけるミリ波(mmWave)通信のための,データ駆動型空対地(A2G)チャネル推定手法を提案する。
実効的なチャネル推定手法を開発し、各UAVは、各ビームフォーミング方向に沿って条件付き生成対向ネットワーク(CGAN)を介してスタンドアロンチャネルモデルを訓練することができる。
分散CGANアーキテクチャに基づく協調的なフレームワークを開発し、各UAVがmmWaveチャネルの分布を協調的に学習できるようにする。
論文 参考訳(メタデータ) (2021-02-02T20:56:46Z) - Land Cover Classification from Remote Sensing Images Based on
Multi-Scale Fully Convolutional Network [11.781492801320223]
マルチスケール畳み込みカーネルを用いたMSFCN(Multi-Scale Fully Convolutional Network)を提案する。
論文 参考訳(メタデータ) (2020-08-01T04:31:11Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。