A randomized benchmarking suite for mid-circuit measurements
- URL: http://arxiv.org/abs/2207.04836v2
- Date: Fri, 12 Apr 2024 22:05:43 GMT
- Title: A randomized benchmarking suite for mid-circuit measurements
- Authors: L. C. G. Govia, P. Jurcevic, C. J. Wood, N. Kanazawa, S. T. Merkel, D. C. McKay,
- Abstract summary: We present a mid-circuit measurement benchmarking suite developed from the ubiquitous paradigm of randomized benchmarking.
We show how our benchmarking suite can be used to both detect as well as quantify errors on both measured and spectator qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mid-circuit measurements are a key component in many quantum information computing protocols, including quantum error correction, fault-tolerant logical operations, and measurement based quantum computing. As such, techniques to quickly and efficiently characterize or benchmark their performance are of great interest. Beyond the measured qubit, it is also relevant to determine what, if any, impact mid-circuit measurement has on adjacent, unmeasured, spectator qubits. Here, we present a mid-circuit measurement benchmarking suite developed from the ubiquitous paradigm of randomized benchmarking. We show how our benchmarking suite can be used to both detect as well as quantify errors on both measured and spectator qubits, including measurement-induced errors on spectator qubits and entangling errors between measured and spectator qubits. We demonstrate the scalability of our suite by simultaneously characterizing mid-circuit measurement on multiple qubits from an IBM Quantum Falcon device, and support our experimental results with numerical simulations. Further, using a mid-circuit measurement tomography protocol we establish the nature of the errors identified by our benchmarking suite.
Related papers
- Real-time measurement error mitigation for one-way quantum computation [0.0]
We propose a quantum error mitigation scheme for single-qubit measurement errors, particularly suited for one-way quantum computation.
Our method is capable of mitigating measurement errors in real-time, during the processing measurements of the one-way computation.
arXiv Detail & Related papers (2024-11-13T23:27:47Z) - Measuring error rates of mid-circuit measurements [0.0]
We introduce the first benchmarking protocol that measures the rate at which mid-circuit measurements induce errors in many-qubit circuits.
We detect and eliminate previously undetected measurement-induced crosstalk in a 20-qubit trapped-ion quantum computer.
We quantify how much of that error is eliminated by dynamical decoupling.
arXiv Detail & Related papers (2024-10-22T05:22:43Z) - Bayesian mitigation of measurement errors in multi-qubit experiments [0.0]
We introduce an implementation of Bayesian measurement error mitigation tailored for multiqubit experiments on near-term quantum devices.
Our approach leverages complete information from the readout signal, which is available before any binary state assignment of the qubits.
We benchmark our protocol on actual quantum computers with superconducting qubits, where the readout signal encodes the measurement information in the IQ clouds before qubit state assignment.
arXiv Detail & Related papers (2024-08-01T18:41:49Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Mitigation of Crosstalk Errors in a Quantum Measurement and Its
Applications [1.433758865948252]
We present a framework for mitigating measurement errors, for both individual and crosstalk errors.
The mitigation protocol is realized in IBMQ Sydney and applied to the certification of entanglement-generating circuits.
arXiv Detail & Related papers (2021-12-20T16:20:49Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Measurement Error Mitigation in Quantum Computers Through Classical
Bit-Flip Correction [1.6872254218310017]
We develop a classical bit-flip correction method to mitigate measurement errors on quantum computers.
This method can be applied to any operator, any number of qubits, and any realistic bit-flip probability.
arXiv Detail & Related papers (2020-07-07T17:52:12Z) - Scalable quantum processor noise characterization [57.57666052437813]
We present a scalable way to construct approximate MFMs for many-qubit devices based on cumulant expansion.
Our method can also be used to characterize various types of correlation error.
arXiv Detail & Related papers (2020-06-02T17:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.