論文の概要: Class-conditioned Domain Generalization via Wasserstein Distributional
Robust Optimization
- arxiv url: http://arxiv.org/abs/2109.03676v1
- Date: Wed, 8 Sep 2021 14:23:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-09 13:42:21.282986
- Title: Class-conditioned Domain Generalization via Wasserstein Distributional
Robust Optimization
- Title(参考訳): ワッサーシュタイン分布ロバスト最適化によるクラス条件領域一般化
- Authors: Jingge Wang, Yang Li, Liyan Xie, Yao Xie
- Abstract要約: 複数のソースドメインが与えられた場合、ドメインの一般化は、目に見えないが関連するターゲットドメインでよく機能する普遍的なモデルを学ぶことを目的としている。
同じクラスが与えられた条件分布の変動が大きい場合、既存のアプローチは十分に堅牢ではない。
我々は、クラス条件領域の一般化問題を解決するために、分散ロバスト最適化の概念を拡張した。
- 参考スコア(独自算出の注目度): 12.10885662305154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given multiple source domains, domain generalization aims at learning a
universal model that performs well on any unseen but related target domain. In
this work, we focus on the domain generalization scenario where domain shifts
occur among class-conditional distributions of different domains. Existing
approaches are not sufficiently robust when the variation of conditional
distributions given the same class is large. In this work, we extend the
concept of distributional robust optimization to solve the class-conditional
domain generalization problem. Our approach optimizes the worst-case
performance of a classifier over class-conditional distributions within a
Wasserstein ball centered around the barycenter of the source conditional
distributions. We also propose an iterative algorithm for learning the optimal
radius of the Wasserstein balls automatically. Experiments show that the
proposed framework has better performance on unseen target domain than
approaches without domain generalization.
- Abstract(参考訳): 複数のソースドメインが与えられた場合、ドメインの一般化は、目に見えないが関連するターゲットドメインでよく機能する普遍的なモデルを学ぶことを目的としている。
本稿では、異なるドメインのクラス条件分布間でドメインシフトが発生するドメイン一般化シナリオに焦点を当てる。
同じクラスが与えられた条件分布の変動が大きい場合、既存のアプローチは十分に堅牢ではない。
本研究では,分散ロバスト最適化の概念を拡張し,クラス条件領域一般化問題を解く。
本手法は,ソース条件分布の重心を中心にしたワッサースタイン球内のクラス条件分布に対する分類器の最悪の性能を最適化する。
また,ワッサースタイン球の最適半径を自動的に学習するための反復アルゴリズムを提案する。
実験により、提案フレームワークは、ドメインの一般化を伴わないアプローチよりも、未認識のターゲットドメインにおいて優れたパフォーマンスを示す。
関連論文リスト
- Constrained Maximum Cross-Domain Likelihood for Domain Generalization [14.91361835243516]
ドメインの一般化は、複数のソースドメイン上で一般化可能なモデルを学ぶことを目的としている。
本稿では,異なる領域の後方分布間のKL偏差を最小限に抑える新しい領域一般化法を提案する。
Digits-DG、PACS、Office-Home、MiniDomainNetの4つの標準ベンチマークデータセットの実験は、我々のメソッドの優れたパフォーマンスを強調している。
論文 参考訳(メタデータ) (2022-10-09T03:41:02Z) - Generalizing to Unseen Domains with Wasserstein Distributional Robustness under Limited Source Knowledge [22.285156929279207]
ドメインの一般化は、目に見えないターゲットドメインでうまく機能する普遍的なモデルを学ぶことを目的としている。
We propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG)。
論文 参考訳(メタデータ) (2022-07-11T14:46:50Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Maximizing Conditional Independence for Unsupervised Domain Adaptation [9.533515002375545]
本研究では,学習者をラベル付きソースドメインから,異なる分布を持つラベル付きターゲットドメインに転送する方法について検討する。
教師なしのドメイン適応に加えて、自然かつエレガントな方法でマルチソースシナリオにメソッドを拡張します。
論文 参考訳(メタデータ) (2022-03-07T08:59:21Z) - Discriminative Domain-Invariant Adversarial Network for Deep Domain
Generalization [33.84004077585957]
本稿では,ドメイン一般化のための識別型ドメイン不変逆数ネットワーク(DDIAN)を提案する。
DDIANは、最先端のドメイン一般化アプローチと比較して、トレーニング中の未確認対象データに対するより良い予測を実現している。
論文 参考訳(メタデータ) (2021-08-20T04:24:12Z) - Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification [81.30327016286009]
一般化可能なRe-IDのための適応型ドメイン固有正規化手法(AdsNorm)を提案する。
本研究では,一般化可能人物 Re-ID に対する適応領域特異的正規化手法 (AdsNorm) を提案する。
論文 参考訳(メタデータ) (2021-05-07T02:54:55Z) - Gradient Matching for Domain Generalization [93.04545793814486]
機械学習システムの重要な要件は、見えないドメインに一般化する能力です。
ドメインの一般化を目標とするドメイン間勾配マッチングの目的を提案する。
我々は、その最適化を近似する単純な一階アルゴリズムfishを導出する。
論文 参考訳(メタデータ) (2021-04-20T12:55:37Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Model-Based Domain Generalization [96.84818110323518]
本稿では,モデルベースドメイン一般化問題に対する新しいアプローチを提案する。
我々のアルゴリズムは、最新のwildsベンチマークの最先端手法を最大20ポイント上回った。
論文 参考訳(メタデータ) (2021-02-23T00:59:02Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインでトレーニングされた機械学習モデルが、統計の異なるターゲットドメインでうまく一般化できないという、ドメインシフトの問題を扱う。
シフト対象領域の一般化を保証するのに失敗するソースドメイン全体にわたるドメイン不変表現を学習することにより、ドメイン一般化の問題を解決するために、複数のアプローチが提案されている。
本稿では,GNNDM(Generative Nearest Neighbor Based Discrepancy Minimization)法を提案する。
論文 参考訳(メタデータ) (2020-07-28T14:54:25Z) - Universal Domain Adaptation through Self Supervision [75.04598763659969]
教師なし領域適応法は、全てのソースカテゴリが対象領域に存在すると仮定する。
本稿では、任意のカテゴリシフトを処理するために、エントロピー最適化(DANCE)によるドメイン適応近傍クラスタリングを提案する。
我々は、DANCEがオープンセット、オープンパーティル、部分的なドメイン適応設定でベースラインより優れていることを示す広範な実験を通して示す。
論文 参考訳(メタデータ) (2020-02-19T01:26:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。