論文の概要: A Federated Cox Model with Non-Proportional Hazards
- arxiv url: http://arxiv.org/abs/2207.05050v1
- Date: Mon, 11 Jul 2022 17:58:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-12 13:53:06.226579
- Title: A Federated Cox Model with Non-Proportional Hazards
- Title(参考訳): 非プロポーションハザードを持つ連体coxモデル
- Authors: Dekai Zhang, Francesca Toni, Matthew Williams
- Abstract要約: 最近の研究は、ニューラルネットワークがCoxモデルのような古典的生存モデルを改善する可能性を示している。
本稿では、このデータ設定に適合し、比例的ハザード仮定を緩和するフェデレートされたコックスモデルを提案する。
利用可能な臨床データセットを実験し、フェデレーションモデルが標準モデルと同様に機能できることを実証する。
- 参考スコア(独自算出の注目度): 8.98624781242271
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has shown the potential for neural networks to improve upon
classical survival models such as the Cox model, which is widely used in
clinical practice. Neural networks, however, typically rely on data that are
centrally available, whereas healthcare data are frequently held in secure
silos. We present a federated Cox model that accommodates this data setting and
also relaxes the proportional hazards assumption, allowing time-varying
covariate effects. In this latter respect, our model does not require explicit
specification of the time-varying effects, reducing upfront organisational
costs compared to previous works. We experiment with publicly available
clinical datasets and demonstrate that the federated model is able to perform
as well as a standard model.
- Abstract(参考訳): 最近の研究では、ニューラルネットワークがCoxモデルのような古典的な生存モデルを改善する可能性を示している。
しかしながら、ニューラルネットワークは通常、集中的に利用可能なデータに依存するが、医療データはセキュアなサイロに保持されることが多い。
本稿では,このデータセットに適合し,比例ハザード仮定を緩和し,時変コバルト効果を許容するフェデレートcoxモデルを提案する。
後者の観点では、我々のモデルは時間的な影響を明確に定義する必要はなく、前回の作業と比べて組織的なコストを削減します。
我々は、公開利用可能な臨床データセットを実験し、フェデレーションモデルが標準モデルと同様に機能できることを実証する。
関連論文リスト
- CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis [0.3213991044370425]
Kolmogorov-Arnold Networks (KAN) は、最近多層パーセプトロン(MLP)の解釈可能かつ正確な代替として提案されている。
我々は,Cox比例ハザードであるCoxKANを,解釈可能な高性能サバイバル解析のために導入する。
論文 参考訳(メタデータ) (2024-09-06T13:59:58Z) - Refining Tuberculosis Detection in CXR Imaging: Addressing Bias in Deep Neural Networks via Interpretability [1.9936075659851882]
実験データから完全な分類精度を得ることができたとしても,深層学習モデルの信頼性は限られていると論じる。
大規模プロキシタスクでディープニューラルネットワークを事前トレーニングし、MOON(Mixed objective Optimization Network)を使用することで、モデルとエキスパート間の決定基盤の整合性を改善することができることを示す。
論文 参考訳(メタデータ) (2024-07-19T06:41:31Z) - CoxSE: Exploring the Potential of Self-Explaining Neural Networks with Cox Proportional Hazards Model for Survival Analysis [3.977091269971331]
生存分析のための自己説明型ニューラルネットワーク(SENN)の可能性を探る。
我々は,局所線形対数ハザード関数を推定することにより,局所的に説明可能なCox比例ハザードモデル(CoxSE)を提案する。
また,生成した説明の安定性と一貫性を制御できるSENN(CoxSENAM)を併用したニューラル加算モデル(NAM)の修正も提案する。
論文 参考訳(メタデータ) (2024-07-18T18:32:54Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - FastCPH: Efficient Survival Analysis for Neural Networks [57.03275837523063]
我々は,線形時間で動作する新しい手法であるFastCPHを提案し,連結イベントに対する標準的なBreslow法とEfron法の両方をサポートする。
また,FastCPHとLassoNetの併用による特徴空間の解釈性も実証した。
論文 参考訳(メタデータ) (2022-08-21T03:35:29Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
生存予測のための新しいフレキシブルな手法,DeepHazardを提案する。
我々のアプローチは、時間内に添加物としてのみ制限される、広範囲の継続的なハザード形態に適合している。
数値的な例では,我々の手法は,C-インデックス計量を用いて評価された予測能力において,既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-07-26T21:01:49Z) - A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19 [3.464871689508835]
我々は、ディファレンス微分方程式(SIR)とリカレントニューラルネットワーク(RNN)に基づく統合疾患モデルを開発する。
イタリアのCO-19データをトレーニングし,既存の時間モデル(NN,SIR,ARIMA)を1日,3日,1週間の予測で上回っていることを示す。
論文 参考訳(メタデータ) (2020-07-14T07:04:57Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。