論文の概要: CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis
- arxiv url: http://arxiv.org/abs/2409.04290v1
- Date: Fri, 6 Sep 2024 13:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 15:44:50.401468
- Title: CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis
- Title(参考訳): CoxKAN: Kolmogorov-Arnold Networks for Interpretable, High-Performance Survival Analysis
- Authors: William Knottenbelt, Zeyu Gao, Rebecca Wray, Woody Zhidong Zhang, Jiashuai Liu, Mireia Crispin-Ortuzar,
- Abstract要約: Kolmogorov-Arnold Networks (KAN) は、最近多層パーセプトロン(MLP)の解釈可能かつ正確な代替として提案されている。
我々は,Cox比例ハザードであるCoxKANを,解釈可能な高性能サバイバル解析のために導入する。
- 参考スコア(独自算出の注目度): 0.3213991044370425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival analysis is a branch of statistics used for modeling the time until a specific event occurs and is widely used in medicine, engineering, finance, and many other fields. When choosing survival models, there is typically a trade-off between performance and interpretability, where the highest performance is achieved by black-box models based on deep learning. This is a major problem in fields such as medicine where practitioners are reluctant to blindly trust black-box models to make important patient decisions. Kolmogorov-Arnold Networks (KANs) were recently proposed as an interpretable and accurate alternative to multi-layer perceptrons (MLPs). We introduce CoxKAN, a Cox proportional hazards Kolmogorov-Arnold Network for interpretable, high-performance survival analysis. We evaluate the proposed CoxKAN on 4 synthetic datasets and 9 real medical datasets. The synthetic experiments demonstrate that CoxKAN accurately recovers interpretable symbolic formulae for the hazard function, and effectively performs automatic feature selection. Evaluation on the 9 real datasets show that CoxKAN consistently outperforms the Cox proportional hazards model and achieves performance that is superior or comparable to that of tuned MLPs. Furthermore, we find that CoxKAN identifies complex interactions between predictor variables that would be extremely difficult to recognise using existing survival methods, and automatically finds symbolic formulae which uncover the precise effect of important biomarkers on patient risk.
- Abstract(参考訳): 生存分析(Survival analysis)は、特定の事象が起こるまでの時間モデリングに使用される統計学の分野であり、医学、工学、金融、その他多くの分野で広く使われている。
生存モデルを選択する場合、通常、パフォーマンスと解釈可能性の間にトレードオフがあり、最も高いパフォーマンスはディープラーニングに基づいたブラックボックスモデルによって達成される。
これは、医師がブラックボックスモデルを盲目的に信頼し、重要な患者決定を下すことに消極的である医学などの分野で大きな問題である。
Kolmogorov-Arnold Networks (KAN) は近年,多層パーセプトロン (MLP) の解釈可能かつ正確な代替として提案されている。
我々は,Cox比例ハザードであるCoxKANを,解釈可能な高性能サバイバル解析のために導入する。
提案したCoxKANを4つの合成データセットと9つの医用データセットで評価した。
合成実験により、CoxKANは、ハザード関数の解釈可能なシンボル式を正確に回収し、自動的特徴選択を効果的に行うことを示した。
9つの実データセットの評価から、CoxKANはCox比例ハザードモデルより一貫して優れており、チューニングされたMLPよりも優れているか同等のパフォーマンスを達成する。
さらに、CoxKANは、既存の生存法で認識するのが極めて難しい予測変数間の複雑な相互作用を識別し、重要なバイオマーカーが患者リスクに与える影響を明らかにするシンボル式を自動的に見つける。
関連論文リスト
- SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data [4.1476925904032464]
本研究では,変分オートエンコーダ (VAE) と長手VAE (LVAE) をトランスフォーマーエンコーダとコックス比例ハザードモジュールに結合してリスク予測を行う手法であるSeqRiskを提案する。
SeqRiskは、シミュレーションと実世界の両方のデータセットにおける既存のアプローチと比較して、競合的に機能することを示した。
論文 参考訳(メタデータ) (2024-09-19T12:35:25Z) - Survival modeling using deep learning, machine learning and statistical methods: A comparative analysis for predicting mortality after hospital admission [9.719996519981333]
コックス比例ハザード(CoxPH)、ステップワイドコックスPH、弾性ネットペナル化コックスモデル、GBM学習など、いくつかの生存分析手法の比較研究を行った。
症例スタディとして,2017年から2019年にかけて,第3次病院救急外来で入院した患者の振り返り分析を行った。
C-indexの結果は、ディープラーニングが同等のパフォーマンスを達成し、DeepSurvが最高の差別を生み出していることを示している。
論文 参考訳(メタデータ) (2024-03-04T10:46:02Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
現状の生存モデルと解釈可能かつ競合する新しい生存分析パイプラインを提案する。
我々のパイプラインは最先端のパフォーマンスを達成し、心不全のリスク要因に関する興味深い新しい洞察を提供する。
論文 参考訳(メタデータ) (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - FastCPH: Efficient Survival Analysis for Neural Networks [57.03275837523063]
我々は,線形時間で動作する新しい手法であるFastCPHを提案し,連結イベントに対する標準的なBreslow法とEfron法の両方をサポートする。
また,FastCPHとLassoNetの併用による特徴空間の解釈性も実証した。
論文 参考訳(メタデータ) (2022-08-21T03:35:29Z) - A Federated Cox Model with Non-Proportional Hazards [8.98624781242271]
最近の研究は、ニューラルネットワークがCoxモデルのような古典的生存モデルを改善する可能性を示している。
本稿では、このデータ設定に適合し、比例的ハザード仮定を緩和するフェデレートされたコックスモデルを提案する。
利用可能な臨床データセットを実験し、フェデレーションモデルが標準モデルと同様に機能できることを実証する。
論文 参考訳(メタデータ) (2022-07-11T17:58:54Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Deep Cox Mixtures for Survival Regression [11.64579638651557]
本稿では,Cox回帰の学習混合物をモデルとした生存分析回帰モデルに対する新しいアプローチについて述べる。
我々は、複数の実世界のデータセットで実験を行い、民族や性別にまたがる患者の死亡率を調べる。
論文 参考訳(メタデータ) (2021-01-16T22:41:22Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。