論文の概要: Shapley Computations Using Surrogate Model-Based Trees
- arxiv url: http://arxiv.org/abs/2207.05214v1
- Date: Mon, 11 Jul 2022 22:20:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-14 03:43:05.808315
- Title: Shapley Computations Using Surrogate Model-Based Trees
- Title(参考訳): サロゲートモデルベースツリーを用いたシェープ計算
- Authors: Zhipu Zhou, Jie Chen, Linwei Hu
- Abstract要約: 本稿では,Surrogateモデルを用いたShapleyとSHAPの値を条件付き期待値に基づいて計算する手法を提案する。
シミュレーション研究により,提案アルゴリズムは精度を向上し,グローバルシェープとSHAPの解釈を統一し,しきい値法は実行時間と精度をトレードオフする方法を提供することが示された。
- 参考スコア(独自算出の注目度): 4.2575268077562685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shapley-related techniques have gained attention as both global and local
interpretation tools because of their desirable properties. However, their
computation using conditional expectations is computationally expensive.
Approximation methods suggested in the literature have limitations. This paper
proposes the use of a surrogate model-based tree to compute Shapley and SHAP
values based on conditional expectation. Simulation studies show that the
proposed algorithm provides improvements in accuracy, unifies global Shapley
and SHAP interpretation, and the thresholding method provides a way to
trade-off running time and accuracy.
- Abstract(参考訳): シェープリー関連技術は、その望ましい性質から、グローバルとローカルの両方の解釈ツールとして注目されている。
しかし、条件付き予測を用いた計算は計算コストがかかる。
文献で示唆される近似法には限界がある。
本稿では,Surrogateモデルを用いたShapleyとSHAPの値を条件付き期待値に基づいて計算する手法を提案する。
シミュレーション研究により,提案手法は精度の向上,グローバルシャプリー解釈とシェープ解釈の統合,しきい値化手法により実行時間と精度のトレードオフが可能となった。
関連論文リスト
- Improving the Sampling Strategy in KernelSHAP [0.8057006406834466]
KernelSHAPフレームワークは、重み付けされた条件付き期待値のサンプルサブセットを用いて、Shapley値の近似を可能にする。
本稿では,現在最先端戦略における重みの分散を低減するための安定化手法,サンプルサブセットに基づいてShapleyカーネル重みを補正する新しい重み付け方式,および重要なサブセットを包含して修正されたShapleyカーネル重みと統合する簡単な戦略を提案する。
論文 参考訳(メタデータ) (2024-10-07T10:02:31Z) - Energy-based Model for Accurate Shapley Value Estimation in Interpretable Deep Learning Predictive Modeling [7.378438977893025]
EmSHAPはShapley値推定のためのエネルギーベースモデルである。
任意の特徴部分集合の下では、Shapleyコントリビューション関数の期待を推定する。
論文 参考訳(メタデータ) (2024-04-01T12:19:33Z) - Variational Shapley Network: A Probabilistic Approach to Self-Explaining
Shapley values with Uncertainty Quantification [2.6699011287124366]
シェープ価値は、モデル決定プロセスの解明のための機械学習(ML)の基礎ツールとして現れている。
本稿では,Shapley値の計算を大幅に単純化し,単一のフォワードパスしか必要としない,新しい自己説明手法を提案する。
論文 参考訳(メタデータ) (2024-02-06T18:09:05Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
我々は,各入力特徴のシェープ値を直接予測し,追加のモデル評価を行なわずに補正モデルを開発する。
2つのテキスト分類データセットの実験結果から、アモルタイズされたモデルでは、Shapley Valuesを最大60倍のスピードアップで正確に見積もっている。
論文 参考訳(メタデータ) (2023-05-31T16:19:13Z) - A $k$-additive Choquet integral-based approach to approximate the SHAP
values for local interpretability in machine learning [8.637110868126546]
本稿では,Shapley値に基づく機械学習モデルに対する解釈可能性の提供を目的とする。
Kernel SHAPと呼ばれるSHAPベースの手法は、計算労力を少なくしてそのような値を近似する効率的な戦略を採用する。
得られた結果から,提案手法ではSHAP値に近似するために属性の連立性に関する計算がより少ないことが確認された。
論文 参考訳(メタデータ) (2022-11-03T22:34:50Z) - Accurate Shapley Values for explaining tree-based models [0.0]
木構造を効率的に利用し,最先端の手法よりも精度の高い2つのシェープ値推定器を導入する。
これらのメソッドはPythonパッケージとして利用できる。
論文 参考訳(メタデータ) (2021-06-07T17:35:54Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Fast Hierarchical Games for Image Explanations [78.16853337149871]
本稿では,シェープリー係数の階層的拡張に基づく画像分類のモデル非依存な説明法を提案する。
他のShapleyベースの説明手法とは異なり、h-Shapはスケーラブルで近似を必要とせずに計算できる。
本手法は,合成データセット,医用画像シナリオ,一般コンピュータビジョン問題において,一般的なシャプリーベースおよび非サプリーベース手法と比較した。
論文 参考訳(メタデータ) (2021-04-13T13:11:02Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。