Quantifying the high-dimensionality of quantum devices
- URL: http://arxiv.org/abs/2207.05722v4
- Date: Wed, 21 Jun 2023 10:20:05 GMT
- Title: Quantifying the high-dimensionality of quantum devices
- Authors: Thomas Cope and Roope Uola
- Abstract summary: We introduce a measure of average dimensionality (or coherence) for high-dimensional quantum devices.
This includes sets of quantum measurements, steering assemblages, and quantum channels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a measure of average dimensionality (or coherence) for
high-dimensional quantum devices. This includes sets of quantum measurements,
steering assemblages, and quantum channels. For measurements and channels, our
measure corresponds to an average compression dimension, whereas for quantum
steering we get a semi-device independent quantifier for the average
entanglement dimensionality known as the Schmidt measure. We analyse the
measure in all three scenarios. First, we show that it can be decided via
semi-definite programming for channels and measurements in low-dimensional
systems. Second, we argue that the resulting steering measure is a
high-dimensional generalisation of the well-known steering weight. Finally, we
analyse the behaviour of the measure in the asymptotic setting. More precisely,
we show that the asymptotic Schmidt measure of bipartite quantum states is
equal to the entanglement cost and show how the recently introduced
entanglement of formation for steering assemblages can be related to our
measure in the asymptotic case.
Related papers
- Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Higher-dimensional symmetric informationally complete measurement via
programmable photonic integrated optics [7.0015653334875205]
We demonstrate an integrated quantum photonic platform to realize such a measurement on three-level quantum systems.
The device operates at the high fidelities necessary for a genuine many-outcome quantum measurement.
It is programmable and can readily implement other quantum measurements at similarly high quality.
arXiv Detail & Related papers (2023-10-13T03:28:06Z) - Relational superposition measurements with a material quantum ruler [2.912552849396905]
We introduce a model to describe an extended material quantum system working as a position measurement device.
We show that we can define a quantum measurement procedure corresponding to the "superposition of positions"
The model is fully relational, because the only meaningful variables are the relative positions between the ruler and the system.
arXiv Detail & Related papers (2023-06-01T05:03:21Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Entanglement and Quantum Correlation Measures from a Minimum Distance
Principle [0.0]
Entanglement, and quantum correlation, are precious resources for quantum technologies implementation based on quantum information science.
We derive an explicit measure able to quantify the degree of quantum correlation for pure or mixed multipartite states.
We prove that our entanglement measure is textitfaithful in the sense that it vanishes only on the set of separable states.
arXiv Detail & Related papers (2022-05-14T22:18:48Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Quantum metrology via chaos in a driven Bose-Josephson system [7.427384041389277]
Entanglement preparation and signal accumulation are essential for quantum parameter estimation.
We propose how to utilize chaotic dynamics in a periodically driven Bose-Josephson system for achieving a high-precision measurement.
arXiv Detail & Related papers (2020-07-13T07:05:27Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.