Relational superposition measurements with a material quantum ruler
- URL: http://arxiv.org/abs/2306.00347v4
- Date: Mon, 22 Apr 2024 02:25:28 GMT
- Title: Relational superposition measurements with a material quantum ruler
- Authors: Hui Wang, Flaminia Giacomini, Franco Nori, Miles P. Blencowe,
- Abstract summary: We introduce a model to describe an extended material quantum system working as a position measurement device.
We show that we can define a quantum measurement procedure corresponding to the "superposition of positions"
The model is fully relational, because the only meaningful variables are the relative positions between the ruler and the system.
- Score: 2.912552849396905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In physics, it is crucial to identify operational measurement procedures to give physical meaning to abstract quantities. There has been significant effort to define time operationally using quantum systems, but the same has not been achieved for space. Developing an operational procedure to obtain information about the location of a quantum system is particularly important for a theory combining general relativity and quantum theory, which cannot rest on the classical notion of spacetime. Here, we take a first step towards this goal, and introduce a model to describe an extended material quantum system working as a position measurement device. Such a "quantum ruler" is composed of $N$ harmonically interacting dipoles and serves as a (quantum) reference system for the position of another quantum system. We show that we can define a quantum measurement procedure corresponding to the "superposition of positions", and that by performing this measurement we can distinguish when the quantum system is in a coherent or incoherent superposition in the position basis. The model is fully relational, because the only meaningful variables are the relative positions between the ruler and the system, and the measurement is expressed in terms of an interaction between the measurement device and the measured system.
Related papers
- Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Direct Characteristic-Function Tomography of the Quantum States of
Quantum Fields [5.145146101802871]
We propose a strategy for implementing a direct readout of the symmetric characteristic function of the quantum states of quantum fields.
This strategy may serve as an essential in understanding and optimizing the control of quantum fields for relativistic quantum information applications.
arXiv Detail & Related papers (2023-10-20T14:15:14Z) - Unraveling the Mystery of Quantum Measurement with A New Space-Time Approach to Relativistic Quantum Mechanics [9.116661570248171]
Quantum measurement is a fundamental concept in the field of quantum mechanics.
Despite its significance, four fundamental issues continue to pose significant challenges to the broader application of quantum measurement.
We employ a new space-time approach to relativistic quantum mechanics to address these issues systematically.
arXiv Detail & Related papers (2023-06-01T13:25:08Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Instantaneous indirect measurement principle in quantum mechanics [8.626149751795754]
We propose a method to obtain the average value of one operator in a certain state by measuring the instantaneous change of the average value of another operator.
For the system to be measured, we find that such measurement neither significantly affects the wave function of the system nor causes wave function collapse of the system.
arXiv Detail & Related papers (2022-07-11T10:46:40Z) - Measurement of a quantum system with a classical apparatus using
ensembles on configuration space [0.48733623015338234]
We use the approach of ensembles on configurations space to give a detailed account of a classical apparatus measuring the position of a quantum particle.
We show that the probability of the pointer of the classical apparatus is left in a state that corresponds to the probability of the quantum particle.
Since this formalism incorporates uncertainties and finite measurement precision, it is well suited for metrological applications.
arXiv Detail & Related papers (2022-05-19T15:48:12Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.