Quantum many-body scars of spinless fermions with density-assisted
hopping in higher dimensions
- URL: http://arxiv.org/abs/2207.06040v3
- Date: Wed, 12 Oct 2022 08:22:03 GMT
- Title: Quantum many-body scars of spinless fermions with density-assisted
hopping in higher dimensions
- Authors: Kensuke Tamura, Hosho Katsura
- Abstract summary: We introduce a class of spinless fermion models that exhibit quantum many-body scars (QMBS)
QMBS are responsible for the nonthermal nature of the system by studying the entanglement entropy and correlation functions.
As another characterization of the QMBS, we give a parent Hamiltonian for which the QMBS are unique ground states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a class of spinless fermion models that exhibit quantum
many-body scars (QMBS) originating from kinetic constraints in the form of
density-assisted hopping. The models can be defined on any lattice in any
dimension and allow for spatially varying interactions. We construct a tower of
exact eigenstates with finite energy density, and we demonstrate that these
QMBS are responsible for the nonthermal nature of the system by studying the
entanglement entropy and correlation functions. The quench dynamics from
certain initial states is also investigated, and it is confirmed that the QMBS
induce nonthermalizing dynamics. As another characterization of the QMBS, we
give a parent Hamiltonian for which the QMBS are unique ground states. We also
prove the uniqueness rigorously.
Related papers
- Towers of Quantum Many-body Scars from Integrable Boundary States [0.3243026006311523]
We construct models with multiple quantum many-body scars (QMBS) using integrable boundary states(IBS)
We focus on the tilted N'eel states, which are parametrized IBS of the spin-1/2 Heisenberg model, and show that these states can be used to construct a tower of scar states.
Our results provide novel insights into constructing QMBS using IBS, thereby illuminating the connection between QMBS and integrable models.
arXiv Detail & Related papers (2024-11-02T14:42:22Z) - Zero-energy Quantum Many-Body Scar under Emergent Chiral Symmetry and Pseudo Hilbert Space Fragmentation [3.688427498755018]
We study the phenomenology of the zero-energy QMBS under the interplay between the chiral symmetry and pseudo HSF.
We find that the interplay between the two gives rise to a highly localized zero-energy QMBS when the particle number is even.
We identify a simple product state to signalize the zero-energy QMBS, which gives rise to unusual scarred dynamics.
arXiv Detail & Related papers (2024-10-30T07:46:10Z) - Quantumness and quantum to classical transition in the generalized Rabi
model [17.03191662568079]
We define the quantumness of a Hamiltonian by the free energy difference between its quantum and classical descriptions.
We show that the Jaynes-Cummings and anti Jaynes-Cummings models exhibit greater quantumness than the Rabi model.
arXiv Detail & Related papers (2023-11-12T18:24:36Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Asymptotic Quantum Many-Body Scars [0.0]
We consider a quantum lattice spin model featuring exact quasiparticle towers of eigenstates with low entanglement at finite size.
We show that the states in the neighboring part of the energy spectrum can be superposed to construct entire families of low-entanglement states.
arXiv Detail & Related papers (2023-03-09T16:47:22Z) - Weak Ergodicity Breaking in the Schwinger Model [0.0]
We study QMBS in spin-$S$ $mathrmU(1)$ quantum link models with staggered fermions.
We find that QMBS persist at $S>1/2$, with the resonant scarring regime, which occurs for a zero-mass quench.
Our results conclusively show that QMBS exist in a wide class of lattice gauge theories in one spatial dimension.
arXiv Detail & Related papers (2022-03-16T18:00:01Z) - Many-body Hilbert space scarring on a superconducting processor [19.205729719781548]
Quantum many-body scarring (QMBS) is a recently discovered form of weak ergodicity breaking in strongly-interacting quantum systems.
Here, we experimentally realize a distinct kind of QMBS phenomena by approximately decoupling a part of the many-body Hilbert space in the computational basis.
Our experimental findings broaden the realm of QMBS mechanisms and pave the way to exploiting correlations in QMBS states for applications in quantum information technology.
arXiv Detail & Related papers (2022-01-10T16:33:38Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.