論文の概要: DiverGet: A Search-Based Software Testing Approach for Deep Neural
Network Quantization Assessment
- arxiv url: http://arxiv.org/abs/2207.06282v1
- Date: Wed, 13 Jul 2022 15:27:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-14 14:07:14.748377
- Title: DiverGet: A Search-Based Software Testing Approach for Deep Neural
Network Quantization Assessment
- Title(参考訳): DiverGet: ディープニューラルネットワーク量子化評価のための検索ベースのソフトウェアテストアプローチ
- Authors: Ahmed Haj Yahmed, Houssem Ben Braiek, Foutse Khomh, Sonia Bouzidi,
Rania Zaatour
- Abstract要約: 量子化は、最も応用されたディープニューラルネットワーク(DNN)圧縮戦略の1つである。
量子化評価のための検索ベースのテストフレームワークであるDiverGetを提案する。
ハイパースペクトルリモートセンシング画像に適用した最先端DNNにおけるDiverGetの性能評価を行った。
- 参考スコア(独自算出の注目度): 10.18462284491991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantization is one of the most applied Deep Neural Network (DNN) compression
strategies, when deploying a trained DNN model on an embedded system or a cell
phone. This is owing to its simplicity and adaptability to a wide range of
applications and circumstances, as opposed to specific Artificial Intelligence
(AI) accelerators and compilers that are often designed only for certain
specific hardware (e.g., Google Coral Edge TPU). With the growing demand for
quantization, ensuring the reliability of this strategy is becoming a critical
challenge. Traditional testing methods, which gather more and more genuine data
for better assessment, are often not practical because of the large size of the
input space and the high similarity between the original DNN and its quantized
counterpart. As a result, advanced assessment strategies have become of
paramount importance. In this paper, we present DiverGet, a search-based
testing framework for quantization assessment. DiverGet defines a space of
metamorphic relations that simulate naturally-occurring distortions on the
inputs. Then, it optimally explores these relations to reveal the disagreements
among DNNs of different arithmetic precision. We evaluate the performance of
DiverGet on state-of-the-art DNNs applied to hyperspectral remote sensing
images. We chose the remote sensing DNNs as they're being increasingly deployed
at the edge (e.g., high-lift drones) in critical domains like climate change
research and astronomy. Our results show that DiverGet successfully challenges
the robustness of established quantization techniques against
naturally-occurring shifted data, and outperforms its most recent concurrent,
DiffChaser, with a success rate that is (on average) four times higher.
- Abstract(参考訳): 量子化は、組み込みシステムや携帯電話にトレーニングされたDNNモデルをデプロイする際の、最も応用されたディープニューラルネットワーク(DNN)圧縮戦略の1つである。
これは、特定の特定のハードウェア(例えば、Google Coral Edge TPU)でのみ設計される特定の人工知能(AI)アクセラレータやコンパイラとは対照的に、幅広いアプリケーションや状況への単純さと適応性のためである。
量子化の需要が高まる中、この戦略の信頼性を確保することが重要な課題となっている。
より正確なデータを収集してより良い評価を行う従来のテスト手法は、入力空間の大きさと元のDNNと量子化されたデータとの高い類似性のため、実用的ではないことが多い。
その結果,高度な評価戦略が重要視されている。
本稿では,量子化評価のための検索ベースのテストフレームワークである diverget を提案する。
DiverGet は入力に自然に生じる歪みをシミュレートする変成関係の空間を定義する。
そして、これらの関係を最適に探索し、異なる算術精度のDNN間の相違を明らかにする。
ハイパースペクトルリモートセンシング画像に適用した最先端DNNにおけるDiverGetの性能評価を行った。
私たちは、気候変動研究や天文学といった重要な領域において、ますますエッジ(高揚力ドローンなど)に配備されるように、リモートセンシングDNNを選択しました。
以上の結果から, diverget は,確立された量子化手法の頑健性に対して,自然に変化するデータに対する挑戦に成功し,(平均して)4倍の成功率で最新のdiffchaser を上回った。
関連論文リスト
- Search-based DNN Testing and Retraining with GAN-enhanced Simulations [2.362412515574206]
安全クリティカルなシステムでは、ディープニューラルネットワーク(DNN)がコンピュータビジョンタスクの重要なコンポーネントになりつつある。
本稿では,シミュレータを用いて入力空間を探索するメタヒューリスティック検索と,シミュレータが生成したデータをリアルな入力画像に変換するGAN(Generative Adversarial Networks)を組み合わせることを提案する。
論文 参考訳(メタデータ) (2024-06-19T09:05:16Z) - A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks [52.09243852066406]
対向収束時間スコア(ACTS)は、対向ロバストネス指標として収束時間を測定する。
我々は,大規模画像Netデータセットに対する異なる敵攻撃に対して,提案したACTSメトリックの有効性と一般化を検証する。
論文 参考訳(メタデータ) (2023-10-10T09:39:38Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - QVIP: An ILP-based Formal Verification Approach for Quantized Neural
Networks [14.766917269393865]
量子化は、浮動小数点数に匹敵する精度でニューラルネットワークのサイズを減らすための有望な技術として登場した。
そこで本研究では,QNNに対する新しい,効率的な形式検証手法を提案する。
特に、QNNの検証問題を整数線形制約の解法に還元する符号化を初めて提案する。
論文 参考訳(メタデータ) (2022-12-10T03:00:29Z) - Taming Reachability Analysis of DNN-Controlled Systems via
Abstraction-Based Training [14.787056022080625]
本稿では, 到達可能性解析における過剰近似DNNの欠如を回避するための, 抽象的アプローチを提案する。
我々は、実数をトレーニングの間隔に抽象化する抽象層を挿入することで、従来のDNNを拡張した。
我々は、DNN制御システムに対する最初のブラックボックス到達可能性分析手法を考案し、訓練されたDNNは抽象状態に対するアクションのためのブラックボックスオラクルとしてのみクエリされる。
論文 参考訳(メタデータ) (2022-11-21T00:11:50Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - A Simple Approach to Improve Single-Model Deep Uncertainty via
Distance-Awareness [33.09831377640498]
本研究では,1つの決定論的表現に基づく1つのネットワークの不確実性向上手法について検討する。
本稿では,現代のDNNにおける距離認識能力を向上させる簡易な手法として,スペクトル正規化ニューラルガウス過程(SNGP)を提案する。
ビジョンと言語理解のベンチマークスイートでは、SNGPは予測、キャリブレーション、ドメイン外検出において、他の単一モデルアプローチよりも優れている。
論文 参考訳(メタデータ) (2022-05-01T05:46:13Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
グラフニューラルネットワーク(GNN)は、グラフおよびリレーショナルデータにディープネットワークアーキテクチャを適用する手段として登場した。
本論文では,既存の作業に基づいて,GNN近傍サンプリングをマルチアームバンディット問題として扱う。
そこで本研究では,分散を低減し,不安定かつ非限定的な支払いを回避すべく設計されたバイアスをある程度導入した報酬関数を提案する。
論文 参考訳(メタデータ) (2021-03-01T15:55:58Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
ディープニューラルネットワーク(DNN)は、敵対的な例やその他のデータ摂動に対して脆弱である。
GraNは、どのDNNにも容易に適応できる時間およびパラメータ効率の手法である。
GraNは多くの問題セットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-04-20T10:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。