Nonlocal quantum heat engines made of hybrid superconducting devices
- URL: http://arxiv.org/abs/2207.06480v2
- Date: Fri, 16 Sep 2022 06:35:29 GMT
- Title: Nonlocal quantum heat engines made of hybrid superconducting devices
- Authors: S. Mojtaba Tabatabaei, David Sanchez, Alfredo Levy Yeyati and Rafael
Sanchez
- Abstract summary: We discuss a quantum thermal machine that generates power from a thermally driven double quantum dot coupled to normal and superconducting reservoirs.
We can distinguish three main mechanisms within the device operation modes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss a quantum thermal machine that generates power from a thermally
driven double quantum dot coupled to normal and superconducting reservoirs.
Energy exchange between the dots is mediated by electron-electron interactions.
We can distinguish three main mechanisms within the device operation modes. In
the Andreev tunneling regime, energy flows in the presence of coherent
superposition of zero- and two-particle states. Despite the intrinsic
electron-hole symmetry of Andreev processes, we find that the heat engine
efficiency increases with increasing coupling to the superconducting reservoir.
The second mechanism occurs in the regime of quasiparticle transport. Here we
obtain large efficiencies due to the presence of the superconducting gap and
the strong energy dependence of the electronic density of states around the gap
edges. Finally, in the third regime there exists a competition between Andreev
processes and quasiparticle tunneling. Altogether, our results emphasize the
importance of both pair tunneling and structured band spectrum for an accurate
characterization of the heat engine properties in normal-superconducting
coupled dot systems.
Related papers
- Towards ultrastrong-coupling quantum thermodynamics using a superconducting flux qubit [3.439115146212617]
We show experimental evidence of strong coupling by observing a hybridized state of the qubit with the cavities coupled to it.
We also demonstrate close to 100% on-off ratio switching of heat current by applying small magnetic flux to the qubit.
We provide a new tool for quantum thermodynamics aimed at realizing true quantum heat engines and refrigerators with enhanced power and efficiency.
arXiv Detail & Related papers (2024-11-16T11:20:05Z) - Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum thermodynamics with a single superconducting vortex [44.99833362998488]
We demonstrate complete control over dynamics of a single superconducting vortex in a nanostructure.
Our device allows us to trap the vortex in a field-cooled aluminum nanosquare and expel it on demand with a nanosecond pulse of electrical current.
arXiv Detail & Related papers (2024-02-09T14:16:20Z) - Superconductivity induced by strong electron-exciton coupling in doped atomically thin semiconductor heterostructures [2.774762581379568]
We study a mechanism to induce superconductivity in atomically thin semiconductors.
By accounting for the strong-coupling physics of trions, we find that the effective electron-exciton interaction develops a strong frequency and momentum dependence.
arXiv Detail & Related papers (2023-10-16T18:00:03Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Photonic heat transport in three terminal superconducting circuit [0.0]
We report an experimental realization of a three-terminal photonic heat transport device based on a superconducting quantum circuit.
Our experiment is an important step in the development of on-chip quantum heat transport devices.
arXiv Detail & Related papers (2021-12-16T22:12:49Z) - Optically induced topological superconductivity via Floquet interaction
engineering [0.0]
We propose a mechanism for light-induced unconventional superconductivity in a two-valley semiconductor with a massive Dirac type band structure.
We consider a circularly-polarized light pump and show that by controlling the detuning of the pump frequency relative to the band gap, different types of chiral superconductivity would be induced.
arXiv Detail & Related papers (2020-08-10T18:17:36Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Thermoelectricity in Quantum-Hall Corbino Structures [48.7576911714538]
We measure the thermoelectric response of Corbino structures in the quantum Hall effect regime.
We predict a figure of merit for the efficiency of thermoelectric cooling which becomes very large for partially filled Landau levels.
arXiv Detail & Related papers (2020-03-03T19:19:28Z) - Electric field control of radiative heat transfer in a superconducting
circuit [0.0]
We introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control.
We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island.
Our results demonstrate that the duality between charge and flux extends to heat transport, with promising applications in thermal management of quantum devices.
arXiv Detail & Related papers (2020-02-26T16:20:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.