論文の概要: Improved OOD Generalization via Conditional Invariant Regularizer
- arxiv url: http://arxiv.org/abs/2207.06687v1
- Date: Thu, 14 Jul 2022 06:34:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 14:12:25.688530
- Title: Improved OOD Generalization via Conditional Invariant Regularizer
- Title(参考訳): 条件不変正規化器によるOOD一般化の改善
- Authors: Mingyang Yi and Ruoyu Wang and Jiachen Sun and Zhenguo Li and Zhi-Ming
Ma
- Abstract要約: クラスラベルが与えられた場合、スプリアス属性の条件付き独立モデルがOOD一般であることが示される。
このような条件独立度を測定するために,OOD誤差を制御する計量条件変分(CSV)を提案する。
この問題を解決するために,ミニケーブ収束率のアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 43.62211060412388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, generalization on out-of-distribution (OOD) data with correlation
shift has attracted great attention. The correlation shift is caused by the
spurious attributes that correlate to the class label, as the correlation
between them may vary in training and test data. For such a problem, we show
that given the class label, the conditionally independent models of spurious
attributes are OOD generalizable. Based on this, a metric Conditional Spurious
Variation (CSV) which controls OOD generalization error, is proposed to measure
such conditional independence. To improve the OOD generalization, we regularize
the training process with the proposed CSV. Under mild assumptions, our
training objective can be formulated as a nonconvex-concave mini-max problem.
An algorithm with provable convergence rate is proposed to solve the problem.
Extensive empirical results verify our algorithm's efficacy in improving OOD
generalization.
- Abstract(参考訳): 近年,相関シフトによるアウト・オブ・ディストリビューション(OOD)データの一般化が注目されている。
相関シフトは、クラスラベルと相関するスプリアス特性が原因であり、それらの相関はトレーニングデータとテストデータで異なる可能性がある。
このような問題に対して、クラスラベルが与えられた場合、スプリアス属性の条件独立モデルはOOD一般化可能であることを示す。
このような条件付き独立性を測定するために,ood一般化誤差を制御するメトリック条件付きスプリアス変動(csv)が提案されている。
OODの一般化を改善するため,提案したCSVを用いてトレーニングプロセスの正規化を行う。
軽度の仮定の下では、我々の訓練目標は、凸凸でないミニマックス問題として定式化できる。
この問題を解決するために, 証明可能な収束率を持つアルゴリズムを提案する。
OOD一般化の改善におけるアルゴリズムの有効性を検証する。
関連論文リスト
- CRoFT: Robust Fine-Tuning with Concurrent Optimization for OOD Generalization and Open-Set OOD Detection [42.33618249731874]
トレーニングデータにおけるエネルギースコアの最大化は、ドメイン一貫性のあるヘッセンの分類損失につながることを示す。
我々は,両タスクの同時最適化を可能にする統合された微調整フレームワークを開発した。
論文 参考訳(メタデータ) (2024-05-26T03:28:59Z) - Towards Robust Out-of-Distribution Generalization Bounds via Sharpness [41.65692353665847]
モデルがドメインシフトにおけるデータ変化を許容する方法にシャープさが及ぼす影響について検討する。
強靭性を考慮したシャープネスに基づくOOD一般化を提案する。
論文 参考訳(メタデータ) (2024-03-11T02:57:27Z) - How Does Unlabeled Data Provably Help Out-of-Distribution Detection? [63.41681272937562]
in-distribution (ID) とout-of-distribution (OOD) の両データの不均一性のため、未ラベルの in-the-wild データは非自明である。
本稿では,理論的保証と実証的有効性の両方を提供する新たな学習フレームワークであるSAL(Separate And Learn)を紹介する。
論文 参考訳(メタデータ) (2024-02-05T20:36:33Z) - Mixture Data for Training Cannot Ensure Out-of-distribution Generalization [21.801115344132114]
トレーニングデータのサイズが大きくなると、必ずしもテスト一般化誤差が減少するとは限らない。
本研究では,OODデータを混合学習データの凸内外にあるデータとして定量的に再定義する。
新たなリスクバウンドの証明は、よく訓練されたモデルの有効性が、目に見えないデータに対して保証されることに同意する。
論文 参考訳(メタデータ) (2023-12-25T11:00:38Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
視覚言語モデル(VLM)におけるOOD精度と校正誤差の両方を改善する頑健な微調整法を提案する。
この知見に基づいて,最小の特異値を持つ制約付きマルチモーダルコントラスト損失を用いて微調整を行う新しいフレームワークを設計する。
論文 参考訳(メタデータ) (2023-11-03T05:41:25Z) - Improving Out-of-Distribution Generalization by Adversarial Training
with Structured Priors [17.936426699670864]
サンプルワイド・アドバイザリ・トレーニング (AT) では, アウト・オブ・ディストリビューション (OOD) の一般化が限定的に改善されていることを示す。
OOD-robustモデルのトレーニングのために,低ランク構造をもつ2つのAT変種を提案する。
提案手法は,経験的リスク最小化(ERM)とサンプルワイドATより優れている。
論文 参考訳(メタデータ) (2022-10-13T07:37:42Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z) - Exploring Covariate and Concept Shift for Detection and Calibration of
Out-of-Distribution Data [77.27338842609153]
キャラクタリゼーションにより、OODデータの検出と信頼性校正には、それぞれのシフトに対する感度が重要であることが明らかになった。
分布内データのみを用いて両シフトでのOOD検出を改善するために,幾何学的に着想を得た手法を提案する。
我々は,OOD検出とキャリブレーションの両面で,異なるタイプのシフトの下でうまく機能する手法を最初に提案する。
論文 参考訳(メタデータ) (2021-10-28T15:42:55Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z) - MUTANT: A Training Paradigm for Out-of-Distribution Generalization in
Visual Question Answering [58.30291671877342]
MUTANTは、モデルが知覚的に類似しているが意味的に異なる入力の変異に露出する訓練パラダイムである。
MUTANTは、VQA-CPに新しい最先端の精度を確立し、10.57%$改善した。
論文 参考訳(メタデータ) (2020-09-18T00:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。