論文の概要: CRoFT: Robust Fine-Tuning with Concurrent Optimization for OOD Generalization and Open-Set OOD Detection
- arxiv url: http://arxiv.org/abs/2405.16417v1
- Date: Sun, 26 May 2024 03:28:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 21:28:05.081995
- Title: CRoFT: Robust Fine-Tuning with Concurrent Optimization for OOD Generalization and Open-Set OOD Detection
- Title(参考訳): CRoFT:OOD一般化とオープンセットOOD検出の同時最適化によるロバストファインチューニング
- Authors: Lin Zhu, Yifeng Yang, Qinying Gu, Xinbing Wang, Chenghu Zhou, Nanyang Ye,
- Abstract要約: トレーニングデータにおけるエネルギースコアの最大化は、ドメイン一貫性のあるヘッセンの分類損失につながることを示す。
我々は,両タスクの同時最適化を可能にする統合された微調整フレームワークを開発した。
- 参考スコア(独自算出の注目度): 42.33618249731874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent vision-language pre-trained models (VL-PTMs) have shown remarkable success in open-vocabulary tasks. However, downstream use cases often involve further fine-tuning of VL-PTMs, which may distort their general knowledge and impair their ability to handle distribution shifts. In real-world scenarios, machine learning systems inevitably encounter both covariate shifts (e.g., changes in image styles) and semantic shifts (e.g., test-time unseen classes). This highlights the importance of enhancing out-of-distribution (OOD) generalization on covariate shifts and simultaneously detecting semantic-shifted unseen classes. Thus a critical but underexplored question arises: How to improve VL-PTMs' generalization ability to closed-set OOD data, while effectively detecting open-set unseen classes during fine-tuning? In this paper, we propose a novel objective function of OOD detection that also serves to improve OOD generalization. We show that minimizing the gradient magnitude of energy scores on training data leads to domain-consistent Hessians of classification loss, a strong indicator for OOD generalization revealed by theoretical analysis. Based on this finding, we have developed a unified fine-tuning framework that allows for concurrent optimization of both tasks. Extensive experiments have demonstrated the superiority of our method. The code is available at https://github.com/LinLLLL/CRoFT.
- Abstract(参考訳): 最近の視覚言語事前学習モデル(VL-PTM)はオープン語彙タスクにおいて顕著な成功を収めている。
しかしながら、下流のユースケースは、VL-PTMのさらなる微調整を伴い、一般的な知識を歪め、分散シフトを扱う能力を損なうことがある。
実世界のシナリオでは、機械学習システムは必然的に、共変量シフト(例:画像スタイルの変化)とセマンティックシフト(例:テスト時間不明クラス)の両方に遭遇する。
このことは、共変量シフトにおけるアウト・オブ・ディストリビューション(OOD)の一般化の強化と、セマンティックシフトした未確認クラスを同時に検出することの重要性を強調している。
VL-PTM の OOD データをクローズセットする一般化能力を改善するにはどうすればいいのか?
本稿では,OODの一般化向上に寄与するOOD検出の目的関数を提案する。
実験データ上でのエネルギースコアの勾配を最小化することは、理論解析によって明らかにされたOOD一般化の強力な指標である分類損失の領域一貫性ヘッセンに繋がることを示す。
そこで本研究では,両タスクの同時最適化を実現するためのファインチューニングフレームワークを開発した。
大規模な実験により,本手法の優位性が確認された。
コードはhttps://github.com/LinLLLL/CRoFTで公開されている。
関連論文リスト
- WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
入力のよりリッチな表現を生成する最終完全連結層にクラスプロジェクションの摂動を導入する。
我々はOpenOODフレームワークの複数のベンチマークで最先端のOOD検出結果を得る。
論文 参考訳(メタデータ) (2024-05-27T13:38:28Z) - Towards Robust Out-of-Distribution Generalization Bounds via Sharpness [41.65692353665847]
モデルがドメインシフトにおけるデータ変化を許容する方法にシャープさが及ぼす影響について検討する。
強靭性を考慮したシャープネスに基づくOOD一般化を提案する。
論文 参考訳(メタデータ) (2024-03-11T02:57:27Z) - Overcoming the Pitfalls of Vision-Language Model Finetuning for OOD Generalization [11.140366256534474]
既存の視覚言語モデルは、様々な視覚領域やタスクに対して強力な一般化を示す。
本稿では,OOD ゲネラリゼーションを改良するための新しいアプローチである OGEN を提案する。
具体的には、未知のクラスのクラス名のみを使用して、OOD機能を合成するために、クラス条件フィーチャジェネレータが導入された。
論文 参考訳(メタデータ) (2024-01-29T06:57:48Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - Improving Out-of-Distribution Generalization by Adversarial Training
with Structured Priors [17.936426699670864]
サンプルワイド・アドバイザリ・トレーニング (AT) では, アウト・オブ・ディストリビューション (OOD) の一般化が限定的に改善されていることを示す。
OOD-robustモデルのトレーニングのために,低ランク構造をもつ2つのAT変種を提案する。
提案手法は,経験的リスク最小化(ERM)とサンプルワイドATより優れている。
論文 参考訳(メタデータ) (2022-10-13T07:37:42Z) - Improved OOD Generalization via Conditional Invariant Regularizer [43.62211060412388]
クラスラベルが与えられた場合、スプリアス属性の条件付き独立モデルがOOD一般であることが示される。
このような条件独立度を測定するために,OOD誤差を制御する計量条件変分(CSV)を提案する。
この問題を解決するために,ミニケーブ収束率のアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-14T06:34:21Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
決定論的不確実性法(DUM)は,分布外データの検出において高い性能を達成する。
DUMが十分に校正されており、現実のアプリケーションにシームレスにスケールできるかどうかは不明だ。
論文 参考訳(メタデータ) (2021-07-01T17:59:07Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
インテント分類は、音声言語理解(SLU)における主要な課題である
近年の研究では、余分なデータやラベルを使用することで、OOD検出性能が向上することが示されている。
本稿では、IND意図分類とOOD検出の両方をサポートしながら、INDデータのみを用いてモデルを訓練することを提案する。
論文 参考訳(メタデータ) (2021-06-28T08:27:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。