An Investigation on Non-Invasive Brain-Computer Interfaces: Emotiv Epoc+
Neuroheadset and Its Effectiveness
- URL: http://arxiv.org/abs/2207.06914v1
- Date: Fri, 24 Jun 2022 05:45:48 GMT
- Title: An Investigation on Non-Invasive Brain-Computer Interfaces: Emotiv Epoc+
Neuroheadset and Its Effectiveness
- Authors: Md Jobair Hossain Faruk, Maria Valero, Hossain Shahriar
- Abstract summary: We explore a decoding natural speech approach that is designed to decode human speech directly from the human brain onto a digital screen introduced by Facebook Reality Lab and University of California San Francisco.
Then, we study a recently presented visionary project to control the human brain using Brain-Machine Interfaces (BMI) approach.
We envision that non-invasive, insertable, and low-cost BCI approaches shall be the focal point for not only an alternative for patients with physical paralysis but also understanding the brain.
- Score: 0.7734726150561089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we illustrate the progress of BCI research and present scores
of unveiled contemporary approaches. First, we explore a decoding natural
speech approach that is designed to decode human speech directly from the human
brain onto a digital screen introduced by Facebook Reality Lab and University
of California San Francisco. Then, we study a recently presented visionary
project to control the human brain using Brain-Machine Interfaces (BMI)
approach. We also investigate well-known electroencephalography (EEG) based
Emotiv Epoc+ Neuroheadset to identify six emotional parameters including
engagement, excitement, focus, stress, relaxation, and interest using brain
signals by experimenting the neuroheadset among three human subjects where we
utilize two supervised learning classifiers, Naive Bayes and Linear Regression
to show the accuracy and competency of the Epoc+ device and its associated
applications in neurotechnological research. We present experimental studies
and the demonstration indicates 69% and 62% improved accuracy for the
aforementioned classifiers respectively in reading the performance matrices of
the participants. We envision that non-invasive, insertable, and low-cost BCI
approaches shall be the focal point for not only an alternative for patients
with physical paralysis but also understanding the brain that would pave us to
access and control the memories and brain somewhere very near.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation [6.5388528484686885]
This study introduces a novel approach towards the creation of medical foundation models.
Our method involves a novel two-stage pretraining approach using vision transformers.
BrainFounder demonstrates a significant performance gain, surpassing the achievements of previous winning solutions.
arXiv Detail & Related papers (2024-06-14T19:49:45Z) - BRACTIVE: A Brain Activation Approach to Human Visual Brain Learning [11.517021103782229]
We introduce Brain Activation Network (BRACTIVE), a transformer-based approach to studying the human visual brain.
The main objective of BRACTIVE is to align the visual features of subjects with corresponding brain representations via fMRI signals.
Our experiments demonstrate that BRACTIVE effectively identifies person-specific regions of interest, such as face and body-selective areas.
arXiv Detail & Related papers (2024-05-29T06:50:13Z) - Achieving More Human Brain-Like Vision via Human EEG Representational Alignment [1.811217832697894]
We present 'Re(presentational)Al(ignment)net', a vision model aligned with human brain activity based on non-invasive EEG.
Our innovative image-to-brain multi-layer encoding framework advances human neural alignment by optimizing multiple model layers.
Our findings suggest that ReAlnet represents a breakthrough in bridging the gap between artificial and human vision, and paving the way for more brain-like artificial intelligence systems.
arXiv Detail & Related papers (2024-01-30T18:18:41Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
We propose a brain-inspired adversarial visual attention network (BI-AVAN) to characterize human visual attention directly from functional brain activity.
Our model imitates the biased competition process between attention-related/neglected objects to identify and locate the visual objects in a movie frame the human brain focuses on in an unsupervised manner.
arXiv Detail & Related papers (2022-10-27T22:20:36Z) - In the realm of hybrid Brain: Human Brain and AI [0.0]
Current brain-computer interface (BCI) technology is mainly on therapeutic outcomes.
Recently, artificial intelligence (AI) and machine learning (ML) technologies have been used to decode brain signals.
We envision the development of closed loop, intelligent, low-power, and miniaturized neural interfaces.
arXiv Detail & Related papers (2022-10-04T08:35:34Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z) - Attention Patterns Detection using Brain Computer Interfaces [1.174402845822043]
We propose a method to assess and quantify human attention levels and their effects on learning.
We employ a brain computer interface (BCI) capable of detecting brain wave activity and displaying the corresponding electroencephalograms (EEG)
We train recurrent neural networks (RNNS) to identify the type of activity an individual is performing.
arXiv Detail & Related papers (2020-05-20T11:55:37Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.