BRACTIVE: A Brain Activation Approach to Human Visual Brain Learning
- URL: http://arxiv.org/abs/2405.18808v1
- Date: Wed, 29 May 2024 06:50:13 GMT
- Title: BRACTIVE: A Brain Activation Approach to Human Visual Brain Learning
- Authors: Xuan-Bac Nguyen, Hojin Jang, Xin Li, Samee U. Khan, Pawan Sinha, Khoa Luu,
- Abstract summary: We introduce Brain Activation Network (BRACTIVE), a transformer-based approach to studying the human visual brain.
The main objective of BRACTIVE is to align the visual features of subjects with corresponding brain representations via fMRI signals.
Our experiments demonstrate that BRACTIVE effectively identifies person-specific regions of interest, such as face and body-selective areas.
- Score: 11.517021103782229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The human brain is a highly efficient processing unit, and understanding how it works can inspire new algorithms and architectures in machine learning. In this work, we introduce a novel framework named Brain Activation Network (BRACTIVE), a transformer-based approach to studying the human visual brain. The main objective of BRACTIVE is to align the visual features of subjects with corresponding brain representations via fMRI signals. It allows us to identify the brain's Regions of Interest (ROI) of the subjects. Unlike previous brain research methods, which can only identify ROIs for one subject at a time and are limited by the number of subjects, BRACTIVE automatically extends this identification to multiple subjects and ROIs. Our experiments demonstrate that BRACTIVE effectively identifies person-specific regions of interest, such as face and body-selective areas, aligning with neuroscience findings and indicating potential applicability to various object categories. More importantly, we found that leveraging human visual brain activity to guide deep neural networks enhances performance across various benchmarks. It encourages the potential of BRACTIVE in both neuroscience and machine intelligence studies.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Achieving More Human Brain-Like Vision via Human EEG Representational Alignment [1.811217832697894]
We present 'Re(presentational)Al(ignment)net', a vision model aligned with human brain activity based on non-invasive EEG.
Our innovative image-to-brain multi-layer encoding framework advances human neural alignment by optimizing multiple model layers.
Our findings suggest that ReAlnet represents a breakthrough in bridging the gap between artificial and human vision, and paving the way for more brain-like artificial intelligence systems.
arXiv Detail & Related papers (2024-01-30T18:18:41Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
We propose a brain-inspired adversarial visual attention network (BI-AVAN) to characterize human visual attention directly from functional brain activity.
Our model imitates the biased competition process between attention-related/neglected objects to identify and locate the visual objects in a movie frame the human brain focuses on in an unsupervised manner.
arXiv Detail & Related papers (2022-10-27T22:20:36Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
Existing machine learning methods for fMRI-based brain decoding either suffer from low classification performance or poor explainability.
We propose a biologically inspired architecture, Spatial Temporal-pyramid Graph Convolutional Network (STpGCN), to capture the spatial-temporal graph representation of functional brain activities.
We conduct extensive experiments on fMRI data under 23 cognitive tasks from Human Connectome Project (HCP) S1200.
arXiv Detail & Related papers (2022-10-08T12:14:33Z) - An Investigation on Non-Invasive Brain-Computer Interfaces: Emotiv Epoc+
Neuroheadset and Its Effectiveness [0.7734726150561089]
We explore a decoding natural speech approach that is designed to decode human speech directly from the human brain onto a digital screen introduced by Facebook Reality Lab and University of California San Francisco.
Then, we study a recently presented visionary project to control the human brain using Brain-Machine Interfaces (BMI) approach.
We envision that non-invasive, insertable, and low-cost BCI approaches shall be the focal point for not only an alternative for patients with physical paralysis but also understanding the brain.
arXiv Detail & Related papers (2022-06-24T05:45:48Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Attention Patterns Detection using Brain Computer Interfaces [1.174402845822043]
We propose a method to assess and quantify human attention levels and their effects on learning.
We employ a brain computer interface (BCI) capable of detecting brain wave activity and displaying the corresponding electroencephalograms (EEG)
We train recurrent neural networks (RNNS) to identify the type of activity an individual is performing.
arXiv Detail & Related papers (2020-05-20T11:55:37Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too.
This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neuro-robotics.
arXiv Detail & Related papers (2020-03-23T14:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.