論文の概要: Detecting People Interested in Non-Suicidal Self-Injury on Social Media
- arxiv url: http://arxiv.org/abs/2207.07014v1
- Date: Sun, 10 Jul 2022 16:22:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-15 14:53:23.403336
- Title: Detecting People Interested in Non-Suicidal Self-Injury on Social Media
- Title(参考訳): ソーシャルメディアにおける非自殺自傷者の検出
- Authors: Zaihan Yang, Dmitry Zinoviev
- Abstract要約: 非自殺性自己損傷(NSSI)に関心のある人を検出するための教師付き学習手法を提案する。
タスクを二分分類問題として扱い、自己宣言的関心事から抽出した特徴に基づく分類器を構築する。
実世界のソーシャルブログプラットフォームLiveJournalを用いた実験により,提案手法の有効性を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a supervised learning approach to detect people interested in
Non-Suicidal Self-Injury (NSSI). We treat the task as a binary classification
problem, and build classifiers based upon features extracted from people
self-declared interests. Experimental evaluation on a real-world dataset, the
LiveJournal social blogging networking platform, demonstrates the effectiveness
of our proposed model.
- Abstract(参考訳): nsi(non-suicidal self-injury)に関心のある人を検出するための教師付き学習手法を提案する。
タスクを二分分類問題として扱い、自己宣言的関心事から抽出した特徴に基づく分類器を構築する。
livejournal social blogging networkingプラットフォームである実世界のデータセットに関する実験的評価は、提案モデルの有効性を示している。
関連論文リスト
- Interactive Event Sifting using Bayesian Graph Neural Networks [20.9835974435447]
この研究は、衛生を自動化するイベント中心の学習ベースのマルチモーダル分類モデルをトレーニングするためのインタラクティブなプロセスを導入する。
ベイズグラフニューラルネットワーク(BGNN)に基づく手法を提案し、アクティブラーニングと擬似ラベルの定式化を評価し、分析者が手動でアノテートしなければならないポスト数を減少させる。
論文 参考訳(メタデータ) (2024-10-07T16:28:47Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) は、与えられたレビューに対して全てのクワッド(アスペクト項、アスペクトカテゴリー、意見項、感情極性)を予測することを目的としている。
ASQPタスクにおける重要な課題はラベル付きデータの不足であり、既存のメソッドのパフォーマンスを制限している。
そこで我々は,擬似ラベルスコアラーを用いた自己学習フレームワークを提案し,レビューと擬似ラベルの一致をスコアラーが評価する。
論文 参考訳(メタデータ) (2024-06-26T05:30:21Z) - Enhancing Intrusion Detection In Internet Of Vehicles Through Federated
Learning [0.0]
フェデレートされた学習は、複数のパーティが協力し、生データを共有せずに共有モデルを学習することを可能にする。
本稿では,CIC-IDS 2017データセットを用いたIoT(Internet of Vehicles)における侵入検知のための連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-23T04:04:20Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - A Quantitative and Qualitative Analysis of Suicide Ideation Detection
using Deep Learning [5.192118773220605]
本稿では,競合するソーシャルメディアによる自殺検知・予測モデルを再現した。
複数のデータセットと異なる最先端ディープラーニングモデルを用いて自殺思考の検出の可能性を検討した。
論文 参考訳(メタデータ) (2022-06-17T10:23:37Z) - Efficient Human-in-the-loop System for Guiding DNNs Attention [25.501443892795614]
本稿では,ユーザが指定した領域に対して,分類器の注意を対話的に誘導する,効率的なHuman-in-the-loopシステムを提案する。
注意誘導のための従来のアプローチでは、ピクセルレベルのアノテーションの準備が必要であり、インタラクティブシステムとして設計されていない。
論文 参考訳(メタデータ) (2022-06-13T09:04:32Z) - An ensemble deep learning technique for detecting suicidal ideation from
posts in social media platforms [0.0]
本稿ではLSTM-Attention-CNN複合モデルを提案する。
提案されたモデルは90.3%の精度、F1スコア92.6%の精度を示した。
論文 参考訳(メタデータ) (2021-12-17T15:34:03Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Mind Your Outliers! Investigating the Negative Impact of Outliers on
Active Learning for Visual Question Answering [71.15403434929915]
視覚的質問応答のタスクにおいて、5つのモデルと4つのデータセットにまたがって、多種多様な能動的学習アプローチがランダム選択を上回りません。
アクティブな学習手法が好まれるが、モデルは学習に失敗する例の集まりである。
本研究では,アクティブ学習プールにおける集団外乱の減少に伴い,アクティブ学習サンプル効率が著しく向上することを示す。
論文 参考訳(メタデータ) (2021-07-06T00:52:11Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
強化学習におけるオフポリシ評価に基づく人間評価スコア推定のための新しいフレームワークであるENIGMAを提案する。
ENIGMAはいくつかの事前収集された経験データしか必要としないため、評価中にターゲットポリシーとのヒューマンインタラクションは不要である。
実験の結果,ENIGMAは人間の評価スコアと相関して既存手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-02-20T03:29:20Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。