論文の概要: Level Set-Based Camera Pose Estimation From Multiple 2D/3D
Ellipse-Ellipsoid Correspondences
- arxiv url: http://arxiv.org/abs/2207.07953v1
- Date: Sat, 16 Jul 2022 14:09:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 07:33:36.320968
- Title: Level Set-Based Camera Pose Estimation From Multiple 2D/3D
Ellipse-Ellipsoid Correspondences
- Title(参考訳): 複数2D/3D楕円型対応によるレベル設定型カメラポース推定
- Authors: Matthieu Zins, Gilles Simon, Marie-Odile Berger
- Abstract要約: 2次元物体検出に対する3次元物体の投影を特徴付けるコスト関数の定義は簡単ではないことを示す。
レベルセットのサンプリングに基づいて楕円楕円コストを開発し、部分的な可視オブジェクトを扱うための優れた特性を実証し、その性能を他の一般的なメトリクスと比較する。
- 参考スコア(独自算出の注目度): 2.016317500787292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose an object-based camera pose estimation from a
single RGB image and a pre-built map of objects, represented with ellipsoidal
models. We show that contrary to point correspondences, the definition of a
cost function characterizing the projection of a 3D object onto a 2D object
detection is not straightforward. We develop an ellipse-ellipse cost based on
level sets sampling, demonstrate its nice properties for handling partially
visible objects and compare its performance with other common metrics. Finally,
we show that the use of a predictive uncertainty on the detected ellipses
allows a fair weighting of the contribution of the correspondences which
improves the computed pose. The code is released at
https://gitlab.inria.fr/tangram/level-set-based-camera-pose-estimation.
- Abstract(参考訳): 本稿では,1枚のRGB画像と楕円体モデルで表現されたオブジェクトの事前マップから,オブジェクトベースのカメラポーズ推定を提案する。
点対応とは対照的に、3Dオブジェクトの2Dオブジェクト検出への投影を特徴付けるコスト関数の定義は簡単ではないことを示す。
レベルセットのサンプリングに基づいて楕円楕円コストを開発し、部分可視オブジェクトを扱うための優れた特性を示し、その性能を他の一般的なメトリクスと比較する。
最後に,検出した楕円に対して予測の不確実性を用いることで,計算されたポーズを改善する対応の寄与を公平に重み付けできることを示す。
コードはhttps://gitlab.inria.fr/tangram/level-set-based-camera-pose-estimationでリリースされる。
関連論文リスト
- LocaliseBot: Multi-view 3D object localisation with differentiable
rendering for robot grasping [9.690844449175948]
オブジェクトのポーズ推定に重点を置いています。
このアプローチは,オブジェクトの複数ビュー,それらの視点におけるカメラのパラメータ,オブジェクトの3次元CADモデルという3つの情報に依存している。
推定対象のポーズが99.65%の精度で真理把握候補を把握できることが示される。
論文 参考訳(メタデータ) (2023-11-14T14:27:53Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
単一のRGB画像から固い物体の6-DoFのポーズを推定することは、非常に難しい課題である。
近年の研究では、高密度対応型解の大きな可能性を示している。
そこで本研究では,CheckerPoseというポーズ推定アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-29T17:30:53Z) - Occupancy Planes for Single-view RGB-D Human Reconstruction [120.5818162569105]
暗黙的な機能を持つシングルビューRGB-Dヒト再構成は、しばしばポイント単位の分類として定式化される。
本稿では,カメラの視野フラストラムをスライスする平面上での占有率予測として,一視点のRGB-D人間の再構成を定式化できる占有面(OPlanes)表現を提案する。
論文 参考訳(メタデータ) (2022-08-04T17:59:56Z) - Neural Correspondence Field for Object Pose Estimation [67.96767010122633]
1枚のRGB画像から3次元モデルで剛体物体の6DoFポーズを推定する手法を提案する。
入力画像の画素で3次元オブジェクト座標を予測する古典的対応法とは異なり,提案手法はカメラフラストラムでサンプリングされた3次元クエリポイントで3次元オブジェクト座標を予測する。
論文 参考訳(メタデータ) (2022-07-30T01:48:23Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
我々の研究は、単一のRGB画像からハンドヘルドオブジェクトを再構築することを目的としている。
通常、既知の3Dテンプレートを仮定し、問題を3Dポーズ推定に還元する以前の作業とは対照的に、我々の作業は3Dテンプレートを知らずに汎用的なハンドヘルドオブジェクトを再構成する。
論文 参考訳(メタデータ) (2022-04-14T17:59:02Z) - Object-Based Visual Camera Pose Estimation From Ellipsoidal Model and
3D-Aware Ellipse Prediction [2.016317500787292]
本稿では,1枚の画像から初期カメラのポーズ推定を行う手法を提案する。
観察条件に関係なく、物体を確実に検出する深層学習技術を活用する。
実験により,提案手法により計算結果の精度が著しく向上することが確認された。
論文 参考訳(メタデータ) (2022-03-09T10:00:52Z) - Stochastic Modeling for Learnable Human Pose Triangulation [0.7646713951724009]
本研究では,3次元ポーズ三角測量のためのモデリングフレームワークを提案し,その性能を異なるデータセットと空間カメラアレンジメントで評価する。
提案したポーズ三角測量モデルは、異なるカメラアレンジメントと2つの公開データセット間の一般化に成功している。
論文 参考訳(メタデータ) (2021-10-01T09:26:25Z) - Category-Level Metric Scale Object Shape and Pose Estimation [73.92460712829188]
本稿では,測度スケールの形状と1枚のRGB画像からのポーズを共同で推定するフレームワークを提案する。
カテゴリーレベルのオブジェクトのポーズと形状を評価するために,合成と実世界の両方のデータセット上で本手法の有効性を検証した。
論文 参考訳(メタデータ) (2021-09-01T12:16:46Z) - 3D-Aware Ellipse Prediction for Object-Based Camera Pose Estimation [3.103806775802078]
視聴条件に頑健な粗いカメラポーズ計算法を提案する。
観察条件に関係なく、物体を確実に検出する深層学習技術を活用する。
論文 参考訳(メタデータ) (2021-05-24T18:40:18Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
独立オブジェクトの2次元画像の集合から学習できる共通オブジェクトカテゴリの3次元形状の表現を提案する。
提案手法は, パラメトリック変形モデル, 非パラメトリック3次元再構成, 標準埋め込みの概念に基づく新しい手法で構築する。
顔、車、鳥の野生のデータセットを3Dで再現することで、最先端の成果が得られます。
論文 参考訳(メタデータ) (2020-08-28T15:44:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。