論文の概要: Evaluating a Signalized Intersection Performance Using Unmanned Aerial
Data
- arxiv url: http://arxiv.org/abs/2207.08025v1
- Date: Sat, 16 Jul 2022 21:48:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 09:54:20.916646
- Title: Evaluating a Signalized Intersection Performance Using Unmanned Aerial
Data
- Title(参考訳): 無人航空機データを用いた信号化交差点性能の評価
- Authors: Mujahid I. Ashqer, Huthaifa I. Ashqar, Mohammed Elhenawy, Mohammed
Almannaa, Mohammad A. Aljamal, Hesham A. Rakha, and Marwan Bikdash
- Abstract要約: 本研究では,ギリシャ・アテネの3方向信号通信交差点におけるドローンの生データの利用について検討した。
リアルタイムビデオから抽出したデータに対する顕微鏡的アプローチと衝撃波解析を用いて,最大待ち行列長を推定した。
様々なMOEの結果は有望であることが判明し、ドローンが収集したトラフィックデータの利用には多くの応用があることが確認された。
- 参考スコア(独自算出の注目度): 11.699288626519682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel method to compute various measures of
effectiveness (MOEs) at a signalized intersection using vehicle trajectory data
collected by flying drones. MOEs are key parameters in determining the quality
of service at signalized intersections. Specifically, this study investigates
the use of drone raw data at a busy three-way signalized intersection in
Athens, Greece, and builds on the open data initiative of the pNEUMA
experiment. Using a microscopic approach and shockwave analysis on data
extracted from realtime videos, we estimated the maximum queue length, whether,
when, and where a spillback occurred, vehicle stops, vehicle travel time and
delay, crash rates, fuel consumption, CO2 emissions, and fundamental diagrams.
Results of the various MOEs were found to be promising, which confirms that the
use of traffic data collected by drones has many applications. We also
demonstrate that estimating MOEs in real-time is achievable using drone data.
Such models have the ability to track individual vehicle movements within
street networks and thus allow the modeler to consider any traffic conditions,
ranging from highly under-saturated to highly over-saturated conditions. These
microscopic models have the advantage of capturing the impact of transient
vehicle behavior on various MOEs.
- Abstract(参考訳): 本稿では,飛行ドローンが収集した車両軌道データを用いて,信号化交差点における様々な有効性(MOE)の計算方法を提案する。
MOEは信号化交差点におけるサービス品質を決定する重要なパラメータである。
具体的には,ギリシャのアテネにある多忙な3方向信号交差点におけるドローンの生データの利用について検討し,pNEUMA実験のオープンデータイニシアチブを構築した。
リアルタイムビデオから抽出したデータに対する顕微鏡的アプローチと衝撃波解析を用いて,最大待ち時間,いつ,どこで流出したか,車両の停止,走行時間と遅延,衝突速度,燃料消費量,CO2排出量,基本図を推定した。
様々なMOEの結果は有望であることが判明し、ドローンが収集したトラフィックデータの利用には多くの応用があることを確認した。
また、ドローンデータを用いてリアルタイムにMOEを推定できることを実証した。
このようなモデルでは、ストリートネットワーク内の個々の車両の動きを追跡できるため、モデラーは高度に飽和状態から過飽和状態まであらゆる交通条件を考慮できる。
これらの顕微鏡モデルでは、過渡車両の挙動が様々なMOEに与える影響を捉えることができる。
関連論文リスト
- Traffic estimation in unobserved network locations using data-driven
macroscopic models [2.3543188414616534]
本稿では,自動交通カウンタとプローブ車両から収集したマクロモデルとマルチソースデータを利用して,これらの測定が不可能なリンクにおいて,交通流と走行時間を正確に推定する。
MaTEはマクロフロー理論に基礎を置いているため、全てのパラメータと変数は解釈可能である。
合成データを用いた実験により, サンプル外リンクの走行時間と交通流を正確に推定できることがわかった。
論文 参考訳(メタデータ) (2024-01-30T15:21:50Z) - Networkwide Traffic State Forecasting Using Exogenous Information: A
Multi-Dimensional Graph Attention-Based Approach [0.0]
本稿では,グラフに基づく交通予測手法(M-STGAT)を提案する。
過去の速度の観測に基づいてトラフィックを予測し、車線閉鎖イベント、温度、交通網の可視性などを予測する。
30分、45分、60分の予測地平線でテストを行う場合、3つの代替モデルを上回る結果が得られた。
論文 参考訳(メタデータ) (2023-10-18T21:57:20Z) - Inverting the Fundamental Diagram and Forecasting Boundary Conditions:
How Machine Learning Can Improve Macroscopic Models for Traffic Flow [0.0]
高速道路を走行する車両のフラックスと速度のデータを,固定センサで収集し,車線および車種別に分類したデータセットについて検討する。
1) 渋滞がセンサの下に現れる場合, 2) 今後センサの下に通過する車両の総量を推定する。
これらの情報片は、センサ間のトラフィックフローのダイナミクスを記述したLWRベースの1次1次マルチクラスモデルの精度を向上させるために使用される。
論文 参考訳(メタデータ) (2023-03-21T11:07:19Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
自律レースでは、天気は突然変化し、認識が著しく低下し、非効率な操作が引き起こされる。
悪天候の検知を改善するために、ディープラーニングベースのモデルは通常、そのような状況下でキャプチャされた広範なデータセットを必要とする。
本稿では,5つの最先端検出器のうち4つの性能向上を図るために,自動レース(CycleGANを用いた)における合成悪条件データセットを用いた手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T10:02:40Z) - Comparison of Object Detection Algorithms Using Video and Thermal Images
Collected from a UAS Platform: An Application of Drones in Traffic Management [2.9932638148627104]
本研究では、視覚カメラと赤外線カメラの両方のリアルタイム車両検出アルゴリズムについて検討する。
フロリダ州タンパの高速道路沿いのUASプラットフォームから、レッドグリーンブルー(RGB)のビデオと熱画像が収集された。
論文 参考訳(メタデータ) (2021-09-27T16:57:09Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
融解したLiDAR点雲と単一LiDAR点雲との差について検討した。
抽出した軌道の評価は, 融合インフラストラクチャーアプローチが追跡結果を著しく増加させ, 数cm以内の精度に達することを示す。
論文 参考訳(メタデータ) (2020-06-22T10:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。