論文の概要: Task Allocation with Load Management in Multi-Agent Teams
- arxiv url: http://arxiv.org/abs/2207.08279v1
- Date: Sun, 17 Jul 2022 20:17:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 04:00:43.548053
- Title: Task Allocation with Load Management in Multi-Agent Teams
- Title(参考訳): マルチエージェントチームにおける負荷管理を伴うタスク割り当て
- Authors: Haochen Wu, Amin Ghadami, Alparslan Emrah Bayrak, Jonathon M. Smereka,
and Bogdan I. Epureanu
- Abstract要約: 負荷管理を考慮したタスク割り当て学習のための多エージェントチームのための意思決定フレームワークを提案する。
負荷管理がチームのパフォーマンスに与える影響を説明し、例のシナリオでエージェントの振る舞いを探る。
コラボレーションにおけるエージェントの重要性の尺度は、潜在的な過負荷の状況に直面しているときにチームのレジリエンスを推測するために開発されます。
- 参考スコア(独自算出の注目度): 4.844411739015927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In operations of multi-agent teams ranging from homogeneous robot swarms to
heterogeneous human-autonomy teams, unexpected events might occur. While
efficiency of operation for multi-agent task allocation problems is the primary
objective, it is essential that the decision-making framework is intelligent
enough to manage unexpected task load with limited resources. Otherwise,
operation effectiveness would drastically plummet with overloaded agents facing
unforeseen risks. In this work, we present a decision-making framework for
multi-agent teams to learn task allocation with the consideration of load
management through decentralized reinforcement learning, where idling is
encouraged and unnecessary resource usage is avoided. We illustrate the effect
of load management on team performance and explore agent behaviors in example
scenarios. Furthermore, a measure of agent importance in collaboration is
developed to infer team resilience when facing handling potential overload
situations.
- Abstract(参考訳): 異種ロボット群から異種人間自律チームまでの多エージェントチームの運用において、予期せぬ出来事が発生する可能性がある。
マルチエージェントタスク割り当て問題に対する作業の効率化が主目的であるが,決定フレームワークはリソース制限による予期せぬタスク負荷の管理に十分な知性を有することが不可欠である。
さもなくば運用効率は、予期せぬリスクに直面した過剰なエージェントによって劇的に低下する。
本研究では、分散強化学習を通じて負荷管理を考慮したタスク割り当てを学習するマルチエージェントチームのための意思決定フレームワークを提案する。
負荷管理がチームのパフォーマンスに与える影響を説明し、例のシナリオでエージェントの振る舞いを探る。
さらに、潜在的な過負荷状況に対処する際にチームのレジリエンスを推測するために、コラボレーションにおけるエージェントの重要性の尺度が開発されている。
関連論文リスト
- Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
本稿では,高速なタスク分解とアロケーションプロセスを活用するマルチエージェントシステムにおけるエージェント指向計画のための新しいフレームワークを提案する。
提案フレームワークにフィードバックループを組み込んで,そのような問題解決プロセスの有効性と堅牢性をさらに向上させる。
論文 参考訳(メタデータ) (2024-10-03T04:07:51Z) - Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning [0.0]
本稿では,エージェントが一括して斬新な行動を示すような報奨戦略を提案する。
ジムは連続した環境で機能するように設計されたノベルティの集中的な尺度に基づいて共同軌道に報いる。
その結果、最適戦略が高レベルの調整を必要とするタスクの解決には、共同探索が不可欠であることが示唆された。
論文 参考訳(メタデータ) (2024-02-06T13:02:00Z) - Optimizing delegation between human and AI collaborative agents [1.6114012813668932]
私たちは、潜在的なパフォーマンス上の欠陥に関してデリゲート決定を行うために、デリゲートマネージャエージェントを訓練します。
我々のフレームワークは、エージェントをマッチングのダイナミクスに制限することなく、チームパフォーマンスの観察を通して学習する。
この結果から,環境の異なる表現の下で運用するエージェントチームによる委譲決定の実施をマネージャが学べることが判明した。
論文 参考訳(メタデータ) (2023-09-26T07:23:26Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z) - Hierarchically Structured Scheduling and Execution of Tasks in a
Multi-Agent Environment [1.0660480034605238]
倉庫環境では、タスクが動的に出現するので、早すぎると労働力にマッチするタスク管理システムは、必ずしも最適ではない。
本稿では,高レベルスケジューリング問題と低レベルマルチエージェント問題の両方を解決するために,深層強化学習を提案する。
論文 参考訳(メタデータ) (2022-03-06T18:11:34Z) - DSDF: An approach to handle stochastic agents in collaborative
multi-agent reinforcement learning [0.0]
ロボットの機能低下や老化によって引き起こされるエージェントの真偽が、協調の不確実性にどのように寄与するかを示す。
DSDFは不確実性に応じてエージェントの割引係数を調整し,その値を用いて個々のエージェントのユーティリティネットワークを更新する。
論文 参考訳(メタデータ) (2021-09-14T12:02:28Z) - Polynomial-Time Algorithms for Multi-Agent Minimal-Capacity Planning [19.614913673879474]
共有タスクを達成するために協力する自律エージェントのリソース容量を最小化する問題を研究する。
消費マルコフ決定過程において、エージェントは限られた容量の資源を有する。
我々は,このグラフ問題をエージェント数,ターゲット位置,消費マルコフ決定過程の大きさで時間的に解くアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-05-04T00:30:02Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。