Instance-Aware Observer Network for Out-of-Distribution Object
Segmentation
- URL: http://arxiv.org/abs/2207.08782v2
- Date: Wed, 20 Jul 2022 12:39:36 GMT
- Title: Instance-Aware Observer Network for Out-of-Distribution Object
Segmentation
- Authors: Victor Besnier, Andrei Bursuc, David Picard, Alexandre Briot
- Abstract summary: We extend the approach of ObsNet by harnessing an instance-wise mask prediction.
We show that our proposed method accurately disentangles in-distribution objects from Out-Of-Distribution objects on three datasets.
- Score: 94.73449180972239
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent work on Observer Network has shown promising results on
Out-Of-Distribution (OOD) detection for semantic segmentation. These methods
have difficulty in precisely locating the point of interest in the image, i.e,
the anomaly. This limitation is due to the difficulty of fine-grained
prediction at the pixel level. To address this issue, we provide instance
knowledge to the observer. We extend the approach of ObsNet by harnessing an
instance-wise mask prediction. We use an additional, class agnostic, object
detector to filter and aggregate observer predictions. Finally, we predict an
unique anomaly score for each instance in the image. We show that our proposed
method accurately disentangle in-distribution objects from Out-Of-Distribution
objects on three datasets.
Related papers
- Learning Temporal Cues by Predicting Objects Move for Multi-camera 3D Object Detection [9.053936905556204]
We propose a model called DAP (Detection After Prediction), consisting of a two-branch network.
The features predicting the current objects from branch (i) is fused into branch (ii) to transfer predictive knowledge.
Our model can be used plug-and-play, showing consistent performance gain.
arXiv Detail & Related papers (2024-04-02T02:20:47Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
We propose a novel uncertainty-aware object detection framework with a structured-graph, where nodes and edges are denoted by objects.
We refer to our model as Uncertainty-Aware Graph network for object DETection (UAGDet)
arXiv Detail & Related papers (2022-08-23T07:29:03Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - GaTector: A Unified Framework for Gaze Object Prediction [11.456242421204298]
We build a novel framework named GaTector to tackle the gaze object prediction problem in a unified way.
To better consider the specificity of inputs and tasks, GaTector introduces two input-specific blocks before the shared backbone and three task-specific blocks after the shared backbone.
In the end, we propose a novel wUoC metric that can reveal the difference between boxes even when they share no overlapping area.
arXiv Detail & Related papers (2021-12-07T07:50:03Z) - Ensembling object detectors for image and video data analysis [98.26061123111647]
We propose a method for ensembling the outputs of multiple object detectors for improving detection performance and precision of bounding boxes on image data.
We extend it to video data by proposing a two-stage tracking-based scheme for detection refinement.
arXiv Detail & Related papers (2021-02-09T12:38:16Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Detective: An Attentive Recurrent Model for Sparse Object Detection [25.5804429439316]
Detective is an attentive object detector that identifies objects in images in a sequential manner.
Detective is a sparse object detector that generates a single bounding box per object instance.
We propose a training mechanism based on the Hungarian algorithm and a loss that balances the localization and classification tasks.
arXiv Detail & Related papers (2020-04-25T17:41:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.