Learning Temporal Cues by Predicting Objects Move for Multi-camera 3D Object Detection
- URL: http://arxiv.org/abs/2404.01580v1
- Date: Tue, 2 Apr 2024 02:20:47 GMT
- Title: Learning Temporal Cues by Predicting Objects Move for Multi-camera 3D Object Detection
- Authors: Seokha Moon, Hongbeen Park, Jungphil Kwon, Jaekoo Lee, Jinkyu Kim,
- Abstract summary: We propose a model called DAP (Detection After Prediction), consisting of a two-branch network.
The features predicting the current objects from branch (i) is fused into branch (ii) to transfer predictive knowledge.
Our model can be used plug-and-play, showing consistent performance gain.
- Score: 9.053936905556204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving and robotics, there is a growing interest in utilizing short-term historical data to enhance multi-camera 3D object detection, leveraging the continuous and correlated nature of input video streams. Recent work has focused on spatially aligning BEV-based features over timesteps. However, this is often limited as its gain does not scale well with long-term past observations. To address this, we advocate for supervising a model to predict objects' poses given past observations, thus explicitly guiding to learn objects' temporal cues. To this end, we propose a model called DAP (Detection After Prediction), consisting of a two-branch network: (i) a branch responsible for forecasting the current objects' poses given past observations and (ii) another branch that detects objects based on the current and past observations. The features predicting the current objects from branch (i) is fused into branch (ii) to transfer predictive knowledge. We conduct extensive experiments with the large-scale nuScenes datasets, and we observe that utilizing such predictive information significantly improves the overall detection performance. Our model can be used plug-and-play, showing consistent performance gain.
Related papers
- Future Does Matter: Boosting 3D Object Detection with Temporal Motion Estimation in Point Cloud Sequences [25.74000325019015]
We introduce a novel LiDAR 3D object detection framework, namely LiSTM, to facilitate spatial-temporal feature learning with cross-frame motion forecasting information.
We have conducted experiments on the aggregation and nuScenes datasets to demonstrate that the proposed framework achieves superior 3D detection performance.
arXiv Detail & Related papers (2024-09-06T16:29:04Z) - DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
Our approach formulates the union of the two tasks as a trajectory refinement problem.
To tackle this unified task, we design a refinement transformer that infers the presence, pose, and multi-modal future behaviors of objects.
In our experiments, we observe that ourmodel outperforms the state-of-the-art on Argoverse 2 Sensor and Open dataset.
arXiv Detail & Related papers (2024-06-06T18:12:04Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection [66.94819989912823]
We propose a point-trajectory transformer with long short-term memory for efficient temporal 3D object detection.
We use point clouds of current-frame objects and their historical trajectories as input to minimize the memory bank storage requirement.
We conduct extensive experiments on the large-scale dataset to demonstrate that our approach performs well against state-of-the-art methods.
arXiv Detail & Related papers (2023-12-13T18:59:13Z) - Predict to Detect: Prediction-guided 3D Object Detection using
Sequential Images [15.51093009875854]
We propose a novel 3D object detection model, P2D (Predict to Detect), that integrates a prediction scheme into a detection framework.
P2D predicts object information in the current frame using solely past frames to learn temporal motion features.
We then introduce a novel temporal feature aggregation method that attentively exploits Bird's-Eye-View (BEV) features based on predicted object information.
arXiv Detail & Related papers (2023-06-14T14:22:56Z) - Temporal Enhanced Training of Multi-view 3D Object Detector via
Historical Object Prediction [28.800204844558518]
We propose a new paradigm, named Historical Object Prediction (HoP) for multi-view 3D detection.
We generate a pseudo Bird's-Eye View (BEV) feature of timestamp t-k from its adjacent frames and utilize this feature to predict the object set at timestamp t-k.
As a plug-and-play approach, HoP can be easily incorporated into state-of-the-art BEV detection frameworks.
arXiv Detail & Related papers (2023-04-03T13:35:29Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone [10.341296683155973]
We propose using a self-supervised training strategy to learn a general point cloud backbone model for downstream 3D vision tasks.
Our main contribution leverages learned flow and motion representations and combines a self-supervised backbone with a 3D detection head.
Experiments on KITTI and nuScenes benchmarks show that the proposed self-supervised pre-training increases 3D detection performance significantly.
arXiv Detail & Related papers (2022-05-02T07:53:29Z) - 3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature
Correlation [0.0]
3D-FCT is a Siamese network architecture that utilizes temporal information to simultaneously perform the related tasks of 3D object detection and tracking.
Our proposed method is evaluated on the KITTI tracking dataset where it is shown to provide an improvement of 5.57% mAP over a state-of-the-art approach.
arXiv Detail & Related papers (2021-10-06T06:36:29Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - Detecting Invisible People [58.49425715635312]
We re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects.
We demonstrate that current detection and tracking systems perform dramatically worse on this task.
Second, we build dynamic models that explicitly reason in 3D, making use of observations produced by state-of-the-art monocular depth estimation networks.
arXiv Detail & Related papers (2020-12-15T16:54:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.