論文の概要: Romanus: Robust Task Offloading in Modular Multi-Sensor Autonomous
Driving Systems
- arxiv url: http://arxiv.org/abs/2207.08865v1
- Date: Mon, 18 Jul 2022 18:22:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 13:32:07.711043
- Title: Romanus: Robust Task Offloading in Modular Multi-Sensor Autonomous
Driving Systems
- Title(参考訳): Romanus: モジュール型マルチセンサ自律運転システムにおけるロバストタスクオフロード
- Authors: Luke Chen, Mohanad Odema, Mohammad Abdullah Al Faruque
- Abstract要約: 本稿では,マルチセンサ処理パイプラインを用いたモジュール型自律走行プラットフォームのための,堅牢で効率的なタスクオフロード手法を提案する。
我々のアプローチは、純粋な局所的な実行よりも14.99%エネルギー効率が高く、頑健な非依存のオフロードベースラインから77.06%のリスク行動の低減を実現している。
- 参考スコア(独自算出の注目度): 9.21629452868642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the high performance and safety requirements of self-driving
applications, the complexity of modern autonomous driving systems (ADS) has
been growing, instigating the need for more sophisticated hardware which could
add to the energy footprint of the ADS platform. Addressing this, edge
computing is poised to encompass self-driving applications, enabling the
compute-intensive autonomy-related tasks to be offloaded for processing at
compute-capable edge servers. Nonetheless, the intricate hardware architecture
of ADS platforms, in addition to the stringent robustness demands, set forth
complications for task offloading which are unique to autonomous driving.
Hence, we present $ROMANUS$, a methodology for robust and efficient task
offloading for modular ADS platforms with multi-sensor processing pipelines.
Our methodology entails two phases: (i) the introduction of efficient
offloading points along the execution path of the involved deep learning
models, and (ii) the implementation of a runtime solution based on Deep
Reinforcement Learning to adapt the operating mode according to variations in
the perceived road scene complexity, network connectivity, and server load.
Experiments on the object detection use case demonstrated that our approach is
14.99% more energy-efficient than pure local execution while achieving a 77.06%
reduction in risky behavior from a robust-agnostic offloading baseline.
- Abstract(参考訳): 自動運転アプリケーションの性能と安全性の要求により、現代の自動運転システム(ADS)の複雑さが増大し、ADSプラットフォームのエネルギーフットプリントを増大させる、より洗練されたハードウェアの必要性が高まっている。
これに対応するために、エッジコンピューティングは、自動運転アプリケーションを含み、計算能力のあるエッジサーバで処理するために、計算集約的な自律関連タスクをオフロードすることができる。
それでも、ADSプラットフォームの複雑なハードウェアアーキテクチャは、厳格な堅牢性要求に加えて、自律運転に特有のタスクオフロードの複雑さを生じさせている。
そこで我々は,マルチセンサ処理パイプラインを備えたモジュール型ADSプラットフォームに対して,ロバストで効率的なタスクオフロードを行う手法であるROMANUS$を提案する。
私たちの方法論には2つのフェーズがあります。
(i)深層学習モデルの実行経路に沿って効率的なオフロード点を導入すること、
(ii)道路事情の複雑さ,ネットワーク接続性,サーバ負荷の変化に応じて運用モードを適応させるために,深層強化学習に基づくランタイムソリューションの実装。
対象物検出ユースケースの実験では,本手法は純粋な局所実行よりも14.99%エネルギー効率が高く,77.06%のリスク行動が頑健なオフロードベースラインから減少することを示した。
関連論文リスト
- Self-Driving Car Racing: Application of Deep Reinforcement Learning [0.0]
このプロジェクトの目的は、OpenAI Gymnasium CarRacing環境でシミュレーションカーを効率的に駆動するAIエージェントを開発することである。
本稿では,DQN(Deep Q-Network)やPPO(Proximal Policy Optimization)などのRLアルゴリズムや,トランスファーラーニングとリカレントニューラルネットワーク(RNN)を組み込んだ新たな適応手法について検討する。
論文 参考訳(メタデータ) (2024-10-30T07:32:25Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - A Fast Task Offloading Optimization Framework for IRS-Assisted
Multi-Access Edge Computing System [14.82292289994152]
我々は,IOPO(Iterative Order-Preserving Policy Optimization)と呼ばれるディープラーニングに基づく最適化フレームワークを提案する。
IOPOはエネルギー効率のよいタスクオフロード決定をミリ秒で生成できる。
実験の結果,提案フレームワークは短時間でエネルギー効率の高いタスクオフロード決定を生成できることがわかった。
論文 参考訳(メタデータ) (2023-07-17T13:32:02Z) - Integrated Decision and Control for High-Level Automated Vehicles by
Mixed Policy Gradient and Its Experiment Verification [10.393343763237452]
本稿では,IDC(Integrated Decision and Control)に基づく自己進化型意思決定システムを提案する。
制約付き混合ポリシー勾配 (CMPG) と呼ばれるRLアルゴリズムは、IDCの駆動ポリシーを継続的に更新するために提案される。
実験結果から, モデルに基づく手法よりも運転能力の向上が期待できることがわかった。
論文 参考訳(メタデータ) (2022-10-19T14:58:41Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
本稿では,そのアーキテクチャと重みを動的に調整し,所望のタスク選択とリソース制約に適合させる制御可能なマルチタスクネットワークを提案する。
本稿では,タスク親和性と分岐正規化損失を利用した2つのハイパーネットの非交互トレーニングを提案し,入力の嗜好を取り入れ,適応重み付き木構造モデルを予測する。
論文 参考訳(メタデータ) (2022-03-28T17:56:40Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Tackling Variabilities in Autonomous Driving [15.374442918002813]
可変性のある自動運転タスクのためのハードウェア基板を提供するために、新しい異種マルチコアAIアクセラレータ(HMAI)を提案します。
また,タスクマッピング問題を解決するために,深層強化学習(RL)に基づくタスクスケジューリング機構FlexAIを提案する。
論文 参考訳(メタデータ) (2021-04-21T08:51:40Z) - Integrated Decision and Control: Towards Interpretable and Efficient
Driving Intelligence [13.589285628074542]
自動走行車のための解釈可能かつ効率的な意思決定・制御フレームワークを提案する。
駆動タスクを階層的に構造化されたマルチパス計画と最適追跡に分解する。
その結果,オンライン計算の効率性や交通効率,安全性などの運転性能が向上した。
論文 参考訳(メタデータ) (2021-03-18T14:43:31Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Multi-scale Interaction for Real-time LiDAR Data Segmentation on an
Embedded Platform [62.91011959772665]
LiDARデータのリアルタイムセマンティックセグメンテーションは、自動運転車にとって不可欠である。
ポイントクラウド上で直接動作する現在のアプローチでは、複雑な空間集約操作を使用する。
本稿では,マルチスケールインタラクションネットワーク(MINet)と呼ばれるプロジェクションベースの手法を提案する。
論文 参考訳(メタデータ) (2020-08-20T19:06:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。