Using Neural Networks by Modelling Semi-Active Shock Absorber
- URL: http://arxiv.org/abs/2207.09141v1
- Date: Tue, 19 Jul 2022 09:21:21 GMT
- Title: Using Neural Networks by Modelling Semi-Active Shock Absorber
- Authors: Moritz Zink, Martin Schiele, Valentin Ivanov
- Abstract summary: A permanently increasing number of on-board automotive control systems requires new approaches to their digital mapping.
Various methods applying neural networks (NN) can be good candidates for relevant digital twin (DT) tools in automotive control system design.
The paper presents an approach, which demonstrates how the regression tasks can be efficiently handled by the modeling of a semi-active shock absorber.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A permanently increasing number of on-board automotive control systems
requires new approaches to their digital mapping that improves functionality in
terms of adaptability and robustness as well as enables their easier on-line
software update. As it can be concluded from many recent studies, various
methods applying neural networks (NN) can be good candidates for relevant
digital twin (DT) tools in automotive control system design, for example, for
controller parameterization and condition monitoring. However, the NN-based DT
has strong requirements to an adequate amount of data to be used in training
and design. In this regard, the paper presents an approach, which demonstrates
how the regression tasks can be efficiently handled by the modeling of a
semi-active shock absorber within the DT framework. The approach is based on
the adaptation of time series augmentation techniques to the stationary data
that increases the variance of the latter. Such a solution gives a background
to elaborate further data engineering methods for the data preparation of
sophisticated databases.
Related papers
- Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures [37.66676003679306]
Adapting to concept drift is a challenging task in machine learning.
In communication networks, such issue emerges when performing traffic forecasting following afailure event.
We propose an approach that exploits adaptive learning algorithms, namely, liquid neural networks, which are capable of self-adaptation to abrupt changes in data patterns without requiring any retraining.
arXiv Detail & Related papers (2024-04-08T08:47:46Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment.
Data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest.
This paper presents theAdaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
arXiv Detail & Related papers (2023-08-03T23:55:17Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Adversarial Learning Networks: Source-free Unsupervised Domain
Incremental Learning [0.0]
In a non-stationary environment, updating a DNN model requires parameter re-training or model fine-tuning.
We propose an unsupervised source-free method to update DNN classification models.
Unlike existing methods, our approach can update a DNN model incrementally for non-stationary source and target tasks without storing past training data.
arXiv Detail & Related papers (2023-01-28T02:16:13Z) - Data efficient reinforcement learning and adaptive optimal perimeter
control of network traffic dynamics [0.0]
This work proposes an integral reinforcement learning (IRL) based approach to learning the macroscopic traffic dynamics for adaptive optimal perimeter control.
To reduce the sampling complexity and use the available data more efficiently, the experience replay (ER) technique is introduced to the IRL algorithm.
The convergence of the IRL-based algorithms and the stability of the controlled traffic dynamics are proven via the Lyapunov theory.
arXiv Detail & Related papers (2022-09-13T04:28:49Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
This work aims to obtain an accurate model for the prediction of the steering angle in an automated driving system.
BO was able to identify, within a limited number of trials, a model -- namely BOST-LSTM -- which resulted, the most accurate when compared to classical end-to-end driving models.
arXiv Detail & Related papers (2021-10-22T15:25:14Z) - Data-driven Small-signal Modeling for Converter-based Power Systems [7.501426386641255]
This article details a complete procedure to derive a data-driven small-signal-based model useful to perform converter-based power system related studies.
To compute the model, Decision Tree (DT) regression, both using single DT and ensemble DT, and Spline regression have been employed.
The possible applications of the model are discussed, highlighting the potential of the developed model in further power system small-signal related studies.
arXiv Detail & Related papers (2021-08-30T08:10:45Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.