Visualized Wave Mechanics by Coupled Macroscopic Pendula: Classical
Analogue to Driven Quantum Bits
- URL: http://arxiv.org/abs/2207.09296v2
- Date: Fri, 2 Jun 2023 12:46:32 GMT
- Title: Visualized Wave Mechanics by Coupled Macroscopic Pendula: Classical
Analogue to Driven Quantum Bits
- Authors: Heribert Lorenz and Sigmund Kohler and Anton Parafilo and Mikhail
Kiselev and Stefan Ludwig
- Abstract summary: We show that it is possible to reconstruct the coherent dynamics of a quantum bit (qubit) using a classical model system.
As a proof of principle, we demonstrate full control of our one-to-one analogue to a qubit by realizing Rabi oscillations, Landau-Zener transitions and Landau-Zener-St"uckelberg-Majorana interferometry.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum mechanics increasingly penetrates modern technologies but, due to its
non-deterministic nature seemingly contradicting our classical everyday world,
our comprehension often stays elusive. Arguing along the correspondence
principle, classical mechanics is often seen as a theory for large systems
where quantum coherence is completely averaged out. Surprisingly, it is still
possible to reconstruct the coherent dynamics of a quantum bit (qubit) by using
a classical model system. This classical-to-quantum analogue is based on wave
mechanics, which applies to both, the classical and the quantum world. In this
spirit we investigate the dynamics of macroscopic physical pendula with a
modulated coupling. As a proof of principle, we demonstrate full control of our
one-to-one analogue to a qubit by realizing Rabi oscillations, Landau-Zener
transitions and Landau-Zener-St\"uckelberg-Majorana interferometry. Our
classical qubit demonstrator can help comprehending and developing useful
quantum technologies.
Related papers
- Quantum and classical symmetries [0.0]
We suggest a somewhat non-standard view on a set of curious, paradoxical from the standpoint of simple classical physics.
We follow these analogies with the examples of relatively simple and well known models of classical physics.
This text can be considered as a mini-course addressed to higher school and undergraduate students who are interested in basics of quantum mechanics.
arXiv Detail & Related papers (2024-06-24T14:45:42Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Dynamics of mixed quantum-classical spin systems [0.0]
Mixed quantum-classical spin systems have been proposed in spin chain theory, organic chemistry, and, more recently, spintronics.
Here, we present a fully Hamiltonian theory of quantum-classical spin dynamics that appears to be the first to ensure an entire series of consistency properties.
arXiv Detail & Related papers (2022-10-03T14:53:46Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - The role of fluctuations in quantum and classical time crystals [58.720142291102135]
We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs.
This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.
arXiv Detail & Related papers (2022-03-10T19:00:01Z) - Entanglement of Classical and Quantum Short-Range Dynamics in Mean-Field
Systems [0.0]
We show the emergence of classical dynamics for very general quantum lattice systems with mean-field interactions.
This leads to a theoretical framework in which the classical and quantum worlds are entangled.
arXiv Detail & Related papers (2021-03-11T15:23:59Z) - Objective trajectories in hybrid classical-quantum dynamics [0.0]
We introduce several toy models in which to study hybrid classical-quantum evolution.
We present an unravelling approach to calculate the dynamics, and provide code to numerically simulate it.
arXiv Detail & Related papers (2020-11-11T19:00:34Z) - Classical limit of quantum mechanics for damped driven oscillatory
systems: Quantum-classical correspondence [0.0]
We develop a quantum formalism on the basis of a linear-invariant theorem.
We illustrate the correspondence of the quantum energy with the classical one in detail.
arXiv Detail & Related papers (2020-10-18T12:12:01Z) - There is only one time [110.83289076967895]
We draw a picture of physical systems that allows us to recognize what is this thing called "time"
We derive the Schr"odinger equation in the first case, and the Hamilton equations of motion in the second one.
arXiv Detail & Related papers (2020-06-22T09:54:46Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.