論文の概要: The Need for a Meta-Architecture for Robot Autonomy
- arxiv url: http://arxiv.org/abs/2207.09712v1
- Date: Wed, 20 Jul 2022 07:27:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-21 14:00:50.455398
- Title: The Need for a Meta-Architecture for Robot Autonomy
- Title(参考訳): 自律ロボットのためのメタアーキテクチャの必要性
- Authors: Stalin Mu\~noz Guti\'errez (1), Gerald Steinbauer-Wagner (1) ((1)
Autonomous Intelligent Systems Group. Institute of Software Technology. Graz
University of Technology. Austria.)
- Abstract要約: ロボットシステムの長期的な自律性には、障害や振る舞いの問題、知識の欠如に対処できるプラットフォームが暗黙的に必要である。
我々は,自律型ロボットエージェントの認知アーキテクチャの生成モデルとして,モデルベース工学の原則と認証可能な信頼性を前提としたケースを提起した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-term autonomy of robotic systems implicitly requires dependable
platforms that are able to naturally handle hardware and software faults,
problems in behaviors, or lack of knowledge. Model-based dependable platforms
additionally require the application of rigorous methodologies during the
system development, including the use of correct-by-construction techniques to
implement robot behaviors. As the level of autonomy in robots increases, so do
the cost of offering guarantees about the dependability of the system.
Certifiable dependability of autonomous robots, we argue, can benefit from
formal models of the integration of several cognitive functions, knowledge
processing, reasoning, and meta-reasoning. Here we put forward the case for a
generative model of cognitive architectures for autonomous robotic agents that
subscribes to the principles of model-based engineering and certifiable
dependability, autonomic computing, and knowledge-enabled robotics.
- Abstract(参考訳): ロボットシステムの長期的な自律性は、ハードウェアやソフトウェアの障害、動作上の問題、知識の欠如を自然に処理できる信頼可能なプラットフォームを必要とする。
モデルに基づく信頼性のあるプラットフォームは、ロボットの振る舞いを実装するための正しい構成技術の使用を含む、システム開発中に厳密な方法論を適用する必要がある。
ロボットにおける自律性のレベルが増加するにつれて、システムの信頼性に関する保証を提供するコストも上昇する。
自律ロボットの証明可能な信頼性は、認知機能の統合、知識処理、推論、メタ推論の形式モデルから恩恵を受けることができると我々は主張する。
ここでは,自律型ロボットエージェントの認知アーキテクチャの生成モデルとして,モデルベース工学の原則と認証可能な信頼性,自律コンピューティング,知識対応ロボット工学の原則を取り入れた。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis [82.59451639072073]
汎用ロボットはどんな環境でも、どんな物体でもシームレスに動作し、様々なスキルを使って様々なタスクをこなす。
コミュニティとしては、特定のタスク用に設計し、特定のデータセットでトレーニングし、特定の環境にデプロイすることで、ほとんどのロボットシステムを制約してきました。
ウェブスケールで大規模で大容量の事前学習型モデルの優れたオープンセット性能とコンテンツ生成能力に感銘を受けて,本調査は,汎用ロボティクスに基礎モデルを適用する方法について検討した。
論文 参考訳(メタデータ) (2023-12-14T10:02:55Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Online Learning and Planning in Cognitive Hierarchies [10.28577981317938]
ロボットシステムの複雑な統合推論動作をモデル化するために,既存の形式的枠組みを拡張した。
新しいフレームワークは、異なる推論コンポーネント間の相互作用をより柔軟なモデリングを可能にする。
論文 参考訳(メタデータ) (2023-10-18T23:53:51Z) - A Capability and Skill Model for Heterogeneous Autonomous Robots [69.50862982117127]
機能モデリングは、異なるマシンが提供する機能を意味的にモデル化するための有望なアプローチと考えられている。
この貢献は、製造から自律ロボットの分野への能力モデルの適用と拡張の仕方について考察する。
論文 参考訳(メタデータ) (2022-09-22T10:13:55Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - Behavior coordination for self-adaptive robots using constraint-based
configuration [0.0]
本稿では,自己適応型ロボットの制御アーキテクチャを動的に構成するアルゴリズムを提案する。
このアルゴリズムは制約に基づく構成アプローチを用いて、反応イベントと熟考イベントの両方に対応して、どの基本的なロボット動作をアクティベートするかを決定する。
このソリューションは、ROSとオープンソースをベースとした、Behavior Coordinator CBCと呼ばれるソフトウェア開発ツールとして実装されている。
論文 参考訳(メタデータ) (2021-03-24T12:09:44Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Towards open and expandable cognitive AI architectures for large-scale
multi-agent human-robot collaborative learning [5.478764356647437]
多エージェントLfDロボット学習のための新しい認知アーキテクチャを導入し、オープンでスケーラブルで拡張可能なロボットシステムの信頼性の高い展開を可能にする。
この概念化は、ロボットプラットフォームのネットワークの端ノードで動作する複数のAI駆動の認知プロセスを採用することに依存している。
提案フレームワークの適用性は,実世界の産業ケーススタディの例を用いて説明できる。
論文 参考訳(メタデータ) (2020-12-15T09:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。