論文の概要: Behavior coordination for self-adaptive robots using constraint-based
configuration
- arxiv url: http://arxiv.org/abs/2103.13128v1
- Date: Wed, 24 Mar 2021 12:09:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-25 16:59:18.080016
- Title: Behavior coordination for self-adaptive robots using constraint-based
configuration
- Title(参考訳): 制約を用いた自己適応型ロボットの行動調整
- Authors: Martin Molina, Pablo Santamaria
- Abstract要約: 本稿では,自己適応型ロボットの制御アーキテクチャを動的に構成するアルゴリズムを提案する。
このアルゴリズムは制約に基づく構成アプローチを用いて、反応イベントと熟考イベントの両方に対応して、どの基本的なロボット動作をアクティベートするかを決定する。
このソリューションは、ROSとオープンソースをベースとした、Behavior Coordinator CBCと呼ばれるソフトウェア開発ツールとして実装されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous robots may be able to adapt their behavior in response to changes
in the environment. This is useful, for example, to efficiently handle limited
resources or to respond appropriately to unexpected events such as faults. The
architecture of a self-adaptive robot is complex because it should include
automatic mechanisms to dynamically configure the elements that control robot
behaviors. To facilitate the construction of this type of architectures, it is
useful to have general solutions in the form of software tools that may be
applicable to different robotic systems. This paper presents an original
algorithm to dynamically configure the control architecture, which is
applicable to the development of self-adaptive autonomous robots. This
algorithm uses a constraint-based configuration approach to decide which basic
robot behaviors should be activated in response to both reactive and
deliberative events. The algorithm uses specific search heuristics and
initialization procedures to achieve the performance required by robotic
systems. The solution has been implemented as a software development tool
called Behavior Coordinator CBC (Constraint-Based Configuration), which is
based on ROS and open source, available to the general public. This tool has
been successfully used for building multiple applications of autonomous aerial
robots.
- Abstract(参考訳): 自律ロボットは環境の変化に応じて行動に適応できるかもしれない。
これは例えば、限られたリソースを効率的に処理したり、障害などの予期せぬ事象に適切に応答するために有用である。
自己適応型ロボットのアーキテクチャは、ロボットの動作を制御する要素を動的に構成する自動機構を含む必要があるため複雑である。
この種のアーキテクチャの構築を容易にするために、様々なロボットシステムに適用可能なソフトウェアツールという形で一般的なソリューションを持つことは有用である。
本稿では,自己適応型自律ロボットの開発に適用可能な制御アーキテクチャを動的に構成するアルゴリズムを提案する。
このアルゴリズムは制約に基づく構成手法を用いて、反応イベントと熟考イベントの両方に対応して、どの基本的なロボット動作を活性化すべきかを決定する。
このアルゴリズムは、ロボットシステムに必要な性能を達成するために、特定の探索ヒューリスティックと初期化手順を使用する。
このソリューションは、動作コーディネータCBC(Constraint-Based Configuration)と呼ばれるソフトウェア開発ツールとして実装されている。
このツールは、自律型空中ロボットの複数の応用に成功している。
関連論文リスト
- $\textbf{EMOS}$: $\textbf{E}$mbodiment-aware Heterogeneous $\textbf{M}$ulti-robot $\textbf{O}$perating $\textbf{S}$ystem with LLM Agents [33.77674812074215]
異種ロボット間の効果的な協調を実現するための新しいマルチエージェントフレームワークを提案する。
エージェントがロボットURDFファイルを理解し、ロボットキネマティクスツールを呼び出し、その物理能力の記述を生成する。
Habitat-MASベンチマークは、マルチエージェントフレームワークがエンボディメント認識推論を必要とするタスクをどのように処理するかを評価するように設計されている。
論文 参考訳(メタデータ) (2024-10-30T03:20:01Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
本稿では,ワークステーションの注文処理,アイテムポッドの割り当て,ワークステーションでの注文処理のスケジュールを最適化することで,ウェアハウジングにおけるロボット部品対ピッカー操作を支援する。
そこで我々は, 大規模近傍探索を用いて, サブプロブレム生成に対する学習を最適化する手法を提案する。
Amazon Roboticsと共同で、我々のモデルとアルゴリズムは、最先端のアプローチよりも、実用的な問題に対するより強力なソリューションを生み出していることを示す。
論文 参考訳(メタデータ) (2024-08-29T20:22:22Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
我々は,ロボットを視覚のみからモデル化し,制御することを自律的に学習するアーキテクチャであるNeural Jacobian Fieldsを紹介する。
提案手法は,正確なクローズドループ制御を実現し,各ロボットの因果動的構造を復元する。
論文 参考訳(メタデータ) (2024-07-11T17:55:49Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
汎用ロボット行動合成のための木構造多モードコード生成フレームワークRoboCodeXを提案する。
RoboCodeXは、高レベルの人間の命令を複数のオブジェクト中心の操作ユニットに分解する。
概念的および知覚的理解を制御コマンドにマッピングする能力をさらに強化するため、事前学習のための特別なマルチモーダル推論データセットを収集し、教師付き微調整のための反復的自己更新手法を導入する。
論文 参考訳(メタデータ) (2024-02-25T15:31:43Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - The Need for a Meta-Architecture for Robot Autonomy [0.0]
ロボットシステムの長期的な自律性には、障害や振る舞いの問題、知識の欠如に対処できるプラットフォームが暗黙的に必要である。
我々は,自律型ロボットエージェントの認知アーキテクチャの生成モデルとして,モデルベース工学の原則と認証可能な信頼性を前提としたケースを提起した。
論文 参考訳(メタデータ) (2022-07-20T07:27:23Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Learning and Executing Re-usable Behaviour Trees from Natural Language
Instruction [1.4824891788575418]
ビヘイビアツリーは、堅牢でモジュラーな制御アーキテクチャを提供するために、自然言語命令と組み合わせて使用することができる。
提案手法を用いて生成した行動木を,新しいシナリオに一般化する方法を示す。
本研究は,既存の自然言語命令コーパスに対して検証する。
論文 参考訳(メタデータ) (2021-06-03T07:47:06Z) - Combining Planning and Learning of Behavior Trees for Robotic Assembly [0.9262157005505219]
遺伝的プログラミングアルゴリズムを用いて行動木を生成する手法を提案する。
このタイプの高レベルな行動木学習は,さらなる学習をすることなく実システムへ移行できることを示す。
論文 参考訳(メタデータ) (2021-03-16T13:11:39Z) - Manipulation of Articulated Objects using Dual-arm Robots via Answer Set
Programming [10.316694915810947]
調音物体の操作はロボティクスにおいて最も重要なものであり、最も複雑な操作の1つと見なすことができる。
従来、この問題は、柔軟性と移植性に欠けるアドホックなアプローチによって対処されてきた。
本稿では,ロボット制御アーキテクチャにおける調音オブジェクトの自動操作のための解答セットプログラミング(ASP)に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-02T18:50:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。