論文の概要: Deep Preconditioners and their application to seismic wavefield
processing
- arxiv url: http://arxiv.org/abs/2207.09938v1
- Date: Wed, 20 Jul 2022 14:25:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-21 14:26:31.931627
- Title: Deep Preconditioners and their application to seismic wavefield
processing
- Title(参考訳): 深部プレコンディショナーと地震波場処理への応用
- Authors: Matteo Ravasi
- Abstract要約: スペーサリティプロモーティング・インバージョンと固定基底スペーサ変換は、多くの処理タスクに対するゴート・アプローチを表している。
本稿では,入力された地震データと代表潜在多様体との直接マッピングを学習するために,オートエンコーダネットワークを訓練することを提案する。
トレーニングされたデコーダはその後、物理駆動逆問題に対する非線形プレコンディショナーとして使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Seismic data processing heavily relies on the solution of physics-driven
inverse problems. In the presence of unfavourable data acquisition conditions
(e.g., regular or irregular coarse sampling of sources and/or receivers), the
underlying inverse problem becomes very ill-posed and prior information is
required to obtain a satisfactory solution. Sparsity-promoting inversion,
coupled with fixed-basis sparsifying transforms, represent the go-to approach
for many processing tasks due to its simplicity of implementation and proven
successful application in a variety of acquisition scenarios. Leveraging the
ability of deep neural networks to find compact representations of complex,
multi-dimensional vector spaces, we propose to train an AutoEncoder network to
learn a direct mapping between the input seismic data and a representative
latent manifold. The trained decoder is subsequently used as a nonlinear
preconditioner for the physics-driven inverse problem at hand. Synthetic and
field data are presented for a variety of seismic processing tasks and the
proposed nonlinear, learned transformations are shown to outperform fixed-basis
transforms and convergence faster to the sought solution.
- Abstract(参考訳): 地震データ処理は物理駆動逆問題の解に大きく依存している。
好ましくないデータ取得条件(例えば、ソースおよび/または受信者の規則的または不規則な粗いサンプリング)が存在する場合、基礎となる逆問題は非常に不適切となり、適切な解を得るためには事前情報が必要である。
sparsity-promoting inversionは固定ベーシックなスパルシファイズ変換と相まって、実装の単純さと様々な買収シナリオで成功したアプリケーションが証明されたため、多くの処理タスクのgo-toアプローチを表している。
本稿では,複雑な多次元ベクトル空間のコンパクト表現を求めるディープニューラルネットワークの能力を活用して,入力地震データと代表的な潜在多様体との直接マッピングを学習するオートエンコーダネットワークを訓練する。
トレーニングされたデコーダはその後、物理駆動逆問題に対する非線形プレコンディショナーとして使用される。
様々な地震波処理タスクに対して合成およびフィールドデータを提示し, 提案する非線形・学習変換により, 求める解よりも高速に解を収束できることを示した。
関連論文リスト
- Hierarchical Neural Operator Transformer with Learnable Frequency-aware Loss Prior for Arbitrary-scale Super-resolution [13.298472586395276]
科学データの解像度を高めるために,任意のスケールの超解像(SR)法を提案する。
異なるドメインからの多様なデータセットについて広範な実験を行う。
論文 参考訳(メタデータ) (2024-05-20T17:39:29Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - To be or not to be stable, that is the question: understanding neural
networks for inverse problems [0.0]
本稿では,ニューラルネットワークの安定性と精度のトレードオフを理論的に解析する。
ネットワークの安定性を高め、良好な精度を維持するために、異なる教師付きおよび教師なしのソリューションを提案する。
論文 参考訳(メタデータ) (2022-11-24T16:16:40Z) - Transformer Meets Boundary Value Inverse Problems [4.165221477234755]
変圧器を用いた深部直接サンプリング法は境界値逆問題のクラスを解くために提案される。
慎重に設計されたデータと再構成された画像の間に学習した逆演算子を評価することにより、リアルタイムな再構成を実現する。
論文 参考訳(メタデータ) (2022-09-29T17:45:25Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Resource-Efficient Invariant Networks: Exponential Gains by Unrolled
Optimization [8.37077056358265]
本稿では,最適化に基づく不変ネットワーク構築のための新しい計算プリミティブを提案する。
提案手法の効率向上と音質の実証的,理論的検討を行った。
単純な階層的オブジェクト検出タスクに対して,効率的な不変ネットワークを構築する上で,その有用性を実証する。
論文 参考訳(メタデータ) (2022-03-09T19:04:08Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
現代の深層畳み込みネットワーク(CNN)は、分散シフトの下で一般化しないとしてしばしば批判される。
現代画像分類CNNにおける分布外と転送性能の相互作用を初めて検討した。
トレーニングセットとモデルサイズを増大させることで、分散シフトロバスト性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-16T18:39:04Z) - Joint learning of variational representations and solvers for inverse
problems with partially-observed data [13.984814587222811]
本稿では,教師付き環境において,逆問題に対する実際の変分フレームワークを学習するためのエンドツーエンドフレームワークを設計する。
変動コストと勾配に基づく解法はどちらも、後者の自動微分を用いたニューラルネットワークとして記述される。
これにより、データ駆動による変分モデルの発見につながる。
論文 参考訳(メタデータ) (2020-06-05T19:53:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。