The Gauge Theory of Measurement-Based Quantum Computation
- URL: http://arxiv.org/abs/2207.10098v2
- Date: Fri, 28 Jun 2024 19:10:38 GMT
- Title: The Gauge Theory of Measurement-Based Quantum Computation
- Authors: Gabriel Wong, Robert Raussendorf, Bartlomiej Czech,
- Abstract summary: Measurement-Based Quantum Computation (MBQC) is a model of quantum computation, which uses local measurements instead of unitary gates.
gauge transformations reflect the freedom of formulating the same MBQC computation in different local reference frames.
Our framework situates MBQC in a broader context of condensed matter and high energy theory.
- Score: 2.064778280254481
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Measurement-Based Quantum Computation (MBQC) is a model of quantum computation, which uses local measurements instead of unitary gates. Here we explain that the MBQC procedure has a fundamental basis in an underlying gauge theory. This perspective provides a theoretical foundation for global aspects of MBQC. The gauge transformations reflect the freedom of formulating the same MBQC computation in different local reference frames. The main identifications between MBQC and gauge theory concepts are: (i) the computational output of MBQC is a holonomy of the gauge field, (ii) the adaptation of measurement basis that remedies the inherent randomness of quantum measurements is effected by gauge transformations. The gauge theory of MBQC also plays a role in characterizing the entanglement structure of symmetry-protected topologically (SPT) ordered states, which are resources for MBQC. Our framework situates MBQC in a broader context of condensed matter and high energy theory.
Related papers
- Deterministic Ans\"atze for the Measurement-based Variational Quantum
Eigensolver [0.0]
This study introduces MBVQE-ans"atze that respect determinism and resemble the widely used problem-agnostic hardware-efficient VQE ansatz.
We find that ensuring determinism works better via postselection than by adaptive measurements at the expense of increased sampling cost.
We propose an efficient MBQC-inspired method to prepare the resource state, specifically the cluster state, on hardware with heavy-hex connectivity.
arXiv Detail & Related papers (2023-12-20T18:08:25Z) - Measurement-based quantum computation from Clifford quantum cellular
automata [0.8702432681310401]
Measurement-based quantum computation (MBQC) is a paradigm for quantum computation where computation is driven by local measurements.
We show that MBQC is related to a model of quantum computation based on Clifford quantum cellular automata (CQCA)
arXiv Detail & Related papers (2023-12-20T16:54:05Z) - Edge modes, extended TQFT, and measurement based quantum computation [2.741486053013819]
In citeWong:2022mnv, it was explained that measurement based quantum computation in one dimension can be understood in term of a gauge theory.
In this work, we give an alternative formulation of this "entanglement gauge theory" as an extended topological field theory.
arXiv Detail & Related papers (2023-12-01T14:11:31Z) - Quantum Computation of Thermal Averages for a Non-Abelian $D_4$ Lattice
Gauge Theory via Quantum Metropolis Sampling [0.0]
We show the application of the Quantum Metropolis Sampling (QMS) algorithm to a toy gauge theory with discrete non-Abelian gauge group $D_4$ in (2+1)-dimensions.
arXiv Detail & Related papers (2023-09-13T17:05:03Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Applications and resource reductions in measurement-based variational
quantum eigensolvers [0.0]
We present three different problems which are solved by employing a measurement-based implementation of the variational quantum eigensolver algorithm (MBVQE)
We show that by utilising native measurement-based gates rather than standard gates, such as the standard CNOT, MBQCs may be obtained that are both shallow and have simple connectivity while simultaneously exhibiting a large expressibility.
arXiv Detail & Related papers (2023-02-01T22:58:12Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.