Measurement-based quantum computation from Clifford quantum cellular
automata
- URL: http://arxiv.org/abs/2312.13185v1
- Date: Wed, 20 Dec 2023 16:54:05 GMT
- Title: Measurement-based quantum computation from Clifford quantum cellular
automata
- Authors: Hendrik Poulsen Nautrup and Hans J. Briegel
- Abstract summary: Measurement-based quantum computation (MBQC) is a paradigm for quantum computation where computation is driven by local measurements.
We show that MBQC is related to a model of quantum computation based on Clifford quantum cellular automata (CQCA)
- Score: 0.8702432681310401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurement-based quantum computation (MBQC) is a paradigm for quantum
computation where computation is driven by local measurements on a suitably
entangled resource state. In this work we show that MBQC is related to a model
of quantum computation based on Clifford quantum cellular automata (CQCA).
Specifically, we show that certain MBQCs can be directly constructed from CQCAs
which yields a simple and intuitive circuit model representation of MBQC in
terms of quantum computation based on CQCA. We apply this description to
construct various MBQC-based Ans\"atze for parameterized quantum circuits,
demonstrating that the different Ans\"atze may lead to significantly different
performances on different learning tasks. In this way, MBQC yields a family of
Hardware-efficient Ans\"atze that may be adapted to specific problem settings
and is particularly well suited for architectures with translationally
invariant gates such as neutral atoms.
Related papers
- Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Mapping quantum circuits to shallow-depth measurement patterns based on
graph states [0.0]
We create a hybrid simulation technique for measurement-based quantum computing.
We show that groups of fully commuting operators can be implemented using fully-parallel, i.e., non-adaptive, measurements.
We discuss how such circuits can be implemented in constant quantum depths by employing quantum teleportation.
arXiv Detail & Related papers (2023-11-27T19:00:00Z) - Quantum computing quantum Monte Carlo with hybrid tensor network for electronic structure calculations [3.642843803494657]
We propose an algorithm combining QC-QMC with a hybrid tensor network to extend the applicability of QC-QMC beyond a single quantum device size.
Our algorithm is evaluated on the Heisenberg chain model, graphite-based Hubbard model, hydrogen plane model, and MonoArylBiImidazole using full configuration interaction QMC.
arXiv Detail & Related papers (2023-03-31T14:38:40Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Quantum advantage in temporally flat measurement-based quantum computation [0.0]
We study the efficiency of measurement-based quantum computation with a completely flat temporal ordering of measurements.
We identify a family of Boolean functions for which deterministic evaluation using non-adaptive MBQC is possible.
arXiv Detail & Related papers (2022-12-07T14:34:56Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Deterministic and random features for large-scale quantum kernel machine [0.9404723842159504]
We show that the quantum kernel method (QKM) can be made scalable by using our proposed deterministic and random features.
Our numerical experiment, using datasets including $O(1,000) sim O(10,000)$ training data, supports the validity of our method.
arXiv Detail & Related papers (2022-09-05T13:22:34Z) - Quantum Volume for Photonic Quantum Processors [15.3862808585761]
Defining metrics for near-term quantum computing processors has been an integral part of the quantum hardware research and development efforts.
Most metrics such as randomized benchmarking and quantum volume were originally introduced for circuit-based quantum computers.
We present a framework to map physical noises and imperfections in MBQC processes to logical errors in equivalent quantum circuits.
arXiv Detail & Related papers (2022-08-24T18:05:16Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.