Boosting 3D Object Detection via Object-Focused Image Fusion
- URL: http://arxiv.org/abs/2207.10589v1
- Date: Thu, 21 Jul 2022 16:32:05 GMT
- Title: Boosting 3D Object Detection via Object-Focused Image Fusion
- Authors: Hao Yang, Chen Shi, Yihong Chen, Liwei Wang
- Abstract summary: We present DeMF, a method to fuse image information into point features.
We evaluate our method on the challenging SUN RGB-D dataset.
- Score: 33.616129400275156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection has achieved remarkable progress by taking point clouds
as the only input. However, point clouds often suffer from incomplete geometric
structures and the lack of semantic information, which makes detectors hard to
accurately classify detected objects. In this work, we focus on how to
effectively utilize object-level information from images to boost the
performance of point-based 3D detector. We present DeMF, a simple yet effective
method to fuse image information into point features. Given a set of point
features and image feature maps, DeMF adaptively aggregates image features by
taking the projected 2D location of the 3D point as reference. We evaluate our
method on the challenging SUN RGB-D dataset, improving state-of-the-art results
by a large margin (+2.1 mAP@0.25 and +2.3mAP@0.5). Code is available at
https://github.com/haoy945/DeMF.
Related papers
- MS23D: A 3D Object Detection Method Using Multi-Scale Semantic Feature Points to Construct 3D Feature Layer [4.644319899528183]
LiDAR point clouds can effectively depict the motion and posture of objects in three-dimensional space.
In autonomous driving scenarios, the sparsity and hollowness of point clouds create some difficulties for voxel-based methods.
We propose a two-stage 3D object detection framework, called MS23D.
arXiv Detail & Related papers (2023-08-31T08:03:25Z) - Multi-Sem Fusion: Multimodal Semantic Fusion for 3D Object Detection [11.575945934519442]
LiDAR and camera fusion techniques are promising for achieving 3D object detection in autonomous driving.
Most multi-modal 3D object detection frameworks integrate semantic knowledge from 2D images into 3D LiDAR point clouds.
We propose a general multi-modal fusion framework Multi-Sem Fusion (MSF) to fuse the semantic information from both the 2D image and 3D points scene parsing results.
arXiv Detail & Related papers (2022-12-10T10:54:41Z) - Sparse2Dense: Learning to Densify 3D Features for 3D Object Detection [85.08249413137558]
LiDAR-produced point clouds are the major source for most state-of-the-art 3D object detectors.
Small, distant, and incomplete objects with sparse or few points are often hard to detect.
We present Sparse2Dense, a new framework to efficiently boost 3D detection performance by learning to densify point clouds in latent space.
arXiv Detail & Related papers (2022-11-23T16:01:06Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and
Stereo Data Fusion [62.24001258298076]
VPFNet is a new architecture that cleverly aligns and aggregates the point cloud and image data at the virtual' points.
Our VPFNet achieves 83.21% moderate 3D AP and 91.86% moderate BEV AP on the KITTI test set, ranking the 1st since May 21th, 2021.
arXiv Detail & Related papers (2021-11-29T08:51:20Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
We develop a novel single-stage 3D detector for point clouds in an anchor-free manner.
We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps.
We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression.
arXiv Detail & Related papers (2021-08-08T13:42:13Z) - Group-Free 3D Object Detection via Transformers [26.040378025818416]
We present a simple yet effective method for directly detecting 3D objects from the 3D point cloud.
Our method computes the feature of an object from all the points in the point cloud with the help of an attention mechanism in the Transformers citevaswaniattention.
With few bells and whistles, the proposed method achieves state-of-the-art 3D object detection performance on two widely used benchmarks, ScanNet V2 and SUN RGB-D.
arXiv Detail & Related papers (2021-04-01T17:59:36Z) - RoIFusion: 3D Object Detection from LiDAR and Vision [7.878027048763662]
We propose a novel fusion algorithm by projecting a set of 3D Region of Interests (RoIs) from the point clouds to the 2D RoIs of the corresponding the images.
Our approach achieves state-of-the-art performance on the KITTI 3D object detection challenging benchmark.
arXiv Detail & Related papers (2020-09-09T20:23:27Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z) - 3D Object Detection Method Based on YOLO and K-Means for Image and Point
Clouds [1.9458156037869139]
Lidar based 3D object detection and classification tasks are essential for autonomous driving.
This paper proposes a 3D object detection method based on point cloud and image.
arXiv Detail & Related papers (2020-04-21T04:32:36Z) - ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes [93.82668222075128]
We propose a 3D detection architecture called ImVoteNet for RGB-D scenes.
ImVoteNet is based on fusing 2D votes in images and 3D votes in point clouds.
We validate our model on the challenging SUN RGB-D dataset.
arXiv Detail & Related papers (2020-01-29T05:09:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.