MS23D: A 3D Object Detection Method Using Multi-Scale Semantic Feature Points to Construct 3D Feature Layer
- URL: http://arxiv.org/abs/2308.16518v9
- Date: Sat, 10 Aug 2024 05:07:52 GMT
- Title: MS23D: A 3D Object Detection Method Using Multi-Scale Semantic Feature Points to Construct 3D Feature Layer
- Authors: Yongxin Shao, Aihong Tan, Binrui Wang, Tianhong Yan, Zhetao Sun, Yiyang Zhang, Jiaxin Liu,
- Abstract summary: LiDAR point clouds can effectively depict the motion and posture of objects in three-dimensional space.
In autonomous driving scenarios, the sparsity and hollowness of point clouds create some difficulties for voxel-based methods.
We propose a two-stage 3D object detection framework, called MS23D.
- Score: 4.644319899528183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR point clouds can effectively depict the motion and posture of objects in three-dimensional space. Many studies accomplish the 3D object detection by voxelizing point clouds. However, in autonomous driving scenarios, the sparsity and hollowness of point clouds create some difficulties for voxel-based methods. The sparsity of point clouds makes it challenging to describe the geometric features of objects. The hollowness of point clouds poses difficulties for the aggregation of 3D features. We propose a two-stage 3D object detection framework, called MS23D. (1) We propose a method using voxel feature points from multi-branch to construct the 3D feature layer. Using voxel feature points from different branches, we construct a relatively compact 3D feature layer with rich semantic features. Additionally, we propose a distance-weighted sampling method, reducing the loss of foreground points caused by downsampling and allowing the 3D feature layer to retain more foreground points. (2) In response to the hollowness of point clouds, we predict the offsets between deep-level feature points and the object's centroid, making them as close as possible to the object's centroid. This enables the aggregation of these feature points with abundant semantic features. For feature points from shallow-level, we retain them on the object's surface to describe the geometric features of the object. To validate our approach, we evaluated its effectiveness on both the KITTI and ONCE datasets.
Related papers
- Robust 3D Tracking with Quality-Aware Shape Completion [67.9748164949519]
We propose a synthetic target representation composed of dense and complete point clouds depicting the target shape precisely by shape completion for robust 3D tracking.
Specifically, we design a voxelized 3D tracking framework with shape completion, in which we propose a quality-aware shape completion mechanism to alleviate the adverse effect of noisy historical predictions.
arXiv Detail & Related papers (2023-12-17T04:50:24Z) - Sparse2Dense: Learning to Densify 3D Features for 3D Object Detection [85.08249413137558]
LiDAR-produced point clouds are the major source for most state-of-the-art 3D object detectors.
Small, distant, and incomplete objects with sparse or few points are often hard to detect.
We present Sparse2Dense, a new framework to efficiently boost 3D detection performance by learning to densify point clouds in latent space.
arXiv Detail & Related papers (2022-11-23T16:01:06Z) - PSA-Det3D: Pillar Set Abstraction for 3D object Detection [14.788139868324155]
We propose a pillar set abstraction (PSA) and foreground point compensation (FPC) to improve the detection performance for small object.
The experiments on the KITTI 3D detection benchmark show that our proposed PSA-Det3D outperforms other algorithms with high accuracy for small object detection.
arXiv Detail & Related papers (2022-10-20T03:05:34Z) - Boosting 3D Object Detection via Object-Focused Image Fusion [33.616129400275156]
We present DeMF, a method to fuse image information into point features.
We evaluate our method on the challenging SUN RGB-D dataset.
arXiv Detail & Related papers (2022-07-21T16:32:05Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3D object detection methods exploit either voxel-based or point-based features to represent 3D objects in a scene.
We introduce in this paper a novel single-stage 3D detection method having the merit of both voxel-based and point-based features.
arXiv Detail & Related papers (2021-04-02T06:34:49Z) - Group-Free 3D Object Detection via Transformers [26.040378025818416]
We present a simple yet effective method for directly detecting 3D objects from the 3D point cloud.
Our method computes the feature of an object from all the points in the point cloud with the help of an attention mechanism in the Transformers citevaswaniattention.
With few bells and whistles, the proposed method achieves state-of-the-art 3D object detection performance on two widely used benchmarks, ScanNet V2 and SUN RGB-D.
arXiv Detail & Related papers (2021-04-01T17:59:36Z) - Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud
Object Detection [64.2159881697615]
Object detection from 3D point clouds remains a challenging task, though recent studies pushed the envelope with the deep learning techniques.
We propose a domain adaptation like approach to enhance the robustness of the feature representation.
Our simple yet effective approach fundamentally boosts the performance of 3D point cloud object detection and achieves the state-of-the-art results.
arXiv Detail & Related papers (2020-06-08T05:15:06Z) - SSN: Shape Signature Networks for Multi-class Object Detection from
Point Clouds [96.51884187479585]
We propose a novel 3D shape signature to explore the shape information from point clouds.
By incorporating operations of symmetry, convex hull and chebyshev fitting, the proposed shape sig-nature is not only compact and effective but also robust to the noise.
Experiments show that the proposed method performs remarkably better than existing methods on two large-scale datasets.
arXiv Detail & Related papers (2020-04-06T16:01:41Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
We leverage a 3D fully convolutional network for 3D point clouds.
We propose a novel and practical learning mechanism that densely predicts both a detection score and a description feature for each 3D point.
Our method achieves state-of-the-art results in both indoor and outdoor scenarios.
arXiv Detail & Related papers (2020-03-06T12:51:09Z) - Object as Hotspots: An Anchor-Free 3D Object Detection Approach via
Firing of Hotspots [37.16690737208046]
We argue for an approach opposite to existing methods using object-level anchors.
Inspired by compositional models, we propose an object as composition of its interior non-empty voxels, termed hotspots.
Based on OHS, we propose an anchor-free detection head with a novel ground truth assignment strategy.
arXiv Detail & Related papers (2019-12-30T03:02:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.