Quantum States of Fields for Quantum Split Sources
- URL: http://arxiv.org/abs/2207.10592v1
- Date: Thu, 21 Jul 2022 16:33:11 GMT
- Title: Quantum States of Fields for Quantum Split Sources
- Authors: Lin-Qing Chen, Flaminia Giacomini, Carlo Rovelli
- Abstract summary: Field mediated entanglement experiments probe the quantum superposition of macroscopically distinct field configurations.
We show that this phenomenon can be described by using a transparent quantum field theoretical formulation of electromagnetism and gravity in the field basis.
- Score: 1.6459313088247556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Field mediated entanglement experiments probe the quantum superposition of
macroscopically distinct field configurations. We show that this phenomenon can
be described by using a transparent quantum field theoretical formulation of
electromagnetism and gravity in the field basis. The strength of such a
description is that it explicitly displays the superposition of macroscopically
distinct states of the field. In the case of (linearised) quantum general
relativity, this formulation exhibits the quantum superposition of geometries
giving rise to the effect.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum conformal symmetries for spacetimes in superposition [0.0]
We build an explicit quantum operator that can map states describing a quantum field on a superposition of spacetimes to states representing a quantum field with a superposition of masses on a Minkowski background.
It can be used to import the phenomenon of particle production in curved spacetime to its conformally equivalent counterpart, thus revealing new features in modified Minkowski spacetime.
arXiv Detail & Related papers (2022-06-30T18:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Something Can Come of Nothing: Surface Approaches to Quantum
Fluctuations and the Casimir Force [0.0]
The Casimir force provides a striking example of the effects of quantum fluctuations in a mesoscopic system.
Because it arises from the objects' electromagnetic response, the necessary calculations in quantum field theory are most naturally expressed in terms of electromagnetic scattering from each object.
arXiv Detail & Related papers (2022-02-11T01:06:00Z) - Quantum fidelity of electromagnetically induced transparency: The full
quantum theory [0.0]
We study the fidelity of single photons with different quantum states propagating in a medium exhibiting electromagnetically induced transparency (EIT)
Our study shows that the coupling field fluctuations not only change the quantum state of the probe photons, but also slightly affect its transmittance.
arXiv Detail & Related papers (2021-12-06T06:34:30Z) - Quantifying quantum coherence in polariton condensates [0.23746609573239752]
We investigate quantum features of an interacting light-matter system from a multidisciplinary perspective.
We quantify the amount of quantum coherence that results from the quantum superposition of Fock states.
arXiv Detail & Related papers (2021-03-04T13:47:45Z) - Observing Quasiparticles through the Entanglement Lens [0.0]
We argue that the salient features of the quasiparticles, including their quantum numbers, locality and fractionalization are reflected in the entanglement spectrum and in the mutual information.
We illustrate these ideas in the specific context of the $d=1$ transverse field Ising model with an integrability breaking perturbation.
arXiv Detail & Related papers (2020-07-08T18:00:00Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.