Hyperfine Structure of Quantum Entanglement
- URL: http://arxiv.org/abs/2311.01997v3
- Date: Fri, 04 Jul 2025 14:26:15 GMT
- Title: Hyperfine Structure of Quantum Entanglement
- Authors: Liang-Hong Mo, Yao Zhou, Jia-Rui Sun, Peng Ye,
- Abstract summary: We introduce the hyperfine structure of entanglement, which decomposes entanglement contours known as the fine structure into particle-number cumulants.<n>This measure exhibits a set of universal properties with its significance in quantum information science.
- Score: 8.203995433574182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum entanglement, crucial for understanding quantum many-body systems and quantum gravity, is commonly assessed through various measures such as von Neumann entropy, mutual information, and entanglement contour, each with its inherent advantages and limitations. In this work, we introduce the hyperfine structure of entanglement, which decomposes entanglement contours known as the fine structure into particle-number cumulants. This measure exhibits a set of universal properties with its significance in quantum information science. We apply it across diverse contexts: in Fermi gases, establishing connections to mutual information and interacting conformal field theory; in AdS$_3$/CFT$_2$ correspondence, unveiling finer subregion-subregion duality; and in Chern insulators, distinguishing between different quantum phases, especially topological gapped state and trivial gapped state. Our findings suggest experimental accessibility, offering fresh insights into quantum entanglement across physical systems.
Related papers
- Quantum information elements in Quantum Gravity states and processes [0.0]
We discuss basic features of quantum gravity states and processes, common to a number of related quantum gravity formalisms.
We show how entanglement is a seed of topological and geometric properties, and how a pre-geometric, discrete notion of quantum causality can be implemented.
arXiv Detail & Related papers (2025-02-28T17:03:09Z) - Bipartite Bound Entanglement [0.016385815610837167]
Bound entanglement is a special form of quantum entanglement that cannot be used for distillation.<n>We focus on systems of finite dimensions, an area of high relevance for many quantum information processing tasks.<n>The article illuminates areas where our understanding of bound entangled states, particularly their detection and characterization, is yet to be fully developed.
arXiv Detail & Related papers (2024-06-19T12:23:34Z) - A Geometry of entanglement and entropy [0.7373617024876725]
We provide a comprehensive overview of entanglement, highlighting its crucial role in quantum mechanics.
We discuss various methods for quantifying and characterizing entanglement through a geometric perspective.
An example of entanglement as an indispensable resource for the task of state teleportation is presented at the end.
arXiv Detail & Related papers (2024-02-24T18:26:32Z) - Quantifying High-Order Interdependencies in Entangled Quantum States [43.70611649100949]
We introduce the Q-information: an information-theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy.
We show that quantum systems need at least four variables to exhibit high-order properties.
Overall, the Q-information sheds light on novel aspects of the internal organisation of quantum systems and their time evolution.
arXiv Detail & Related papers (2023-10-05T17:00:13Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Entanglement structure in quantum many-body systems, field theories, and
holography [0.0]
The aim of this dissertation is to clarify the structure of entanglement, a type of quantum correlations, in various quantum systems.
Previous examinations of entanglement and holography have focused on specific classes of quantum systems.
arXiv Detail & Related papers (2023-08-18T18:04:44Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Entanglement measures for two-particle quantum histories [0.0]
We prove that bipartite quantum histories are entangled if and only if the Schmidt rank of this matrix is larger than 1.
We then illustrate the non-classical nature of entangled histories with the use of Hardy's overlapping interferometers.
arXiv Detail & Related papers (2022-12-14T20:48:36Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Quantum coherence with incomplete set of pointers and corresponding
wave-particle duality [0.0]
Quantum coherence quantifies the amount of superposition in a quantum system.
We develop the corresponding resource theory, identifying the free states and operations.
We obtain a complementarity relation between the so-defined quantum coherence and the which-path information in an interferometric set-up.
arXiv Detail & Related papers (2021-08-12T16:55:40Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Observing Quasiparticles through the Entanglement Lens [0.0]
We argue that the salient features of the quasiparticles, including their quantum numbers, locality and fractionalization are reflected in the entanglement spectrum and in the mutual information.
We illustrate these ideas in the specific context of the $d=1$ transverse field Ising model with an integrability breaking perturbation.
arXiv Detail & Related papers (2020-07-08T18:00:00Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.