Wide & Deep Learning for Judging Student Performance in Online
One-on-one Math Classes
- URL: http://arxiv.org/abs/2207.10645v1
- Date: Wed, 13 Jul 2022 01:38:57 GMT
- Title: Wide & Deep Learning for Judging Student Performance in Online
One-on-one Math Classes
- Authors: Jiahao Chen, Zitao Liu, Weiqi Luo
- Abstract summary: We build a framework to learn fine-grained predictive representations from a limited amount of noisy classroom conversation data.
We conducted experiments on the task of predicting students' levels of mastery of example questions.
- Score: 27.07952179997629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the opportunities of automating the judgment
process in online one-on-one math classes. We build a Wide & Deep framework to
learn fine-grained predictive representations from a limited amount of noisy
classroom conversation data that perform better student judgments. We conducted
experiments on the task of predicting students' levels of mastery of example
questions and the results demonstrate the superiority and availability of our
model in terms of various evaluation metrics.
Related papers
- A Predictive Model for Student Performance in Classrooms Using Student
Interactions With an eTextbook [0.0]
This paper proposes a new model for predicting student performance based on an analysis of how students interact with an interactive online eTextbook.
To build the proposed model, we evaluated the most popular classification and regression algorithms on data from a data structures and algorithms course.
arXiv Detail & Related papers (2022-02-16T11:59:53Z) - Self-training with Few-shot Rationalization: Teacher Explanations Aid
Student in Few-shot NLU [88.8401599172922]
We develop a framework based on self-training language models with limited task-specific labels and rationales.
We show that the neural model performance can be significantly improved by making it aware of its rationalized predictions.
arXiv Detail & Related papers (2021-09-17T00:36:46Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - Multi-Task Learning based Online Dialogic Instruction Detection with
Pre-trained Language Models [34.66425105076059]
We propose a multi-task paradigm which enhances the ability to distinguish instances of different classes by enlarging the margin between categories via contrastive loss.
Experiments on a real-world online educational data set demonstrate that our approach achieves superior performance compared to representative baselines.
arXiv Detail & Related papers (2021-07-15T04:57:57Z) - Curriculum Learning: A Survey [65.31516318260759]
Curriculum learning strategies have been successfully employed in all areas of machine learning.
We construct a taxonomy of curriculum learning approaches by hand, considering various classification criteria.
We build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm.
arXiv Detail & Related papers (2021-01-25T20:08:32Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
We design an online selective sampling approach that actively selects informative examples to label and outputs the best model with high probability at any round.
Our algorithm can be used for online prediction tasks for both adversarial and streams.
arXiv Detail & Related papers (2020-10-19T19:53:15Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
We propose a novel approach using Graph Neural Networks (GNNs) to achieve better student performance prediction in interactive online question pools.
Specifically, we model the relationship between students and questions using student interactions to construct the student-interaction-question network.
We evaluate the effectiveness of our approach on a real-world dataset consisting of 104,113 mouse trajectories generated in the problem-solving process of over 4000 students on 1631 questions.
arXiv Detail & Related papers (2020-08-04T14:55:32Z) - Data-driven modelling and characterisation of task completion sequences
in online courses [0.0]
We show how data-driven analysis of temporal sequences of task completion in online courses can be used.
We identify critical junctures and differences among types of tasks within the course design.
We find that non-rote learning tasks, such as interactive tasks or discussion posts, are correlated with higher performance.
arXiv Detail & Related papers (2020-07-14T12:39:03Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z) - Educational Question Mining At Scale: Prediction, Analysis and
Personalization [35.42197158180065]
We propose a framework for mining insights from educational questions at scale.
We utilize the state-of-the-art Bayesian deep learning method, in particular partial variational auto-encoders (p-VAE)
We apply our proposed framework to a real-world dataset with tens of thousands of questions and tens of millions of answers from an online education platform.
arXiv Detail & Related papers (2020-03-12T19:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.